当前位置:文档之家› 偶氮苯顺反异构化机理研究进展

偶氮苯顺反异构化机理研究进展

偶氮苯顺反异构化机理研究进展王罗新1,2 王晓工 2 *(1武汉科技学院 武汉 430073;2清华大学化工系高分子研究所 北京 100084)摘要 偶氮苯的光致顺反异构化是许多偶氮类功能材料光响应的基础。

近年来,偶氮苯的顺反异构化机理受到了广泛关注。

本文综述了有关偶氮苯顺反异构化机理的一些最新研究进展,针对偶氮苯光致异构化过程中有争议的旋转和反转机理问题,从争论的起源到目前的研究结论进行了系统总结,同时也提出了一些尚需深入研究的问题。

关键词偶氮苯异构化机理光响应性Progress of the Trans-Cis Isomerization Mechanism of AzobenzeneWang Luoxin1, 2, Wang Xiaogong2 *(Wuhan Universtity of Science and Engineering, Wuhan 430073;Institute of Polymer Science and Engineering, Department of Chemical Engineering, TsinghuaUniversity, Beijing 100084)Abstract: The trans-cis photoisomerization of azobenzene is the basis of photo-responsive properties of many azo-functional materials. The isomerization mechanism has drawn extensive attention recently. This paper reviews the recent research progress in the isomerization mechanism of azobenzene. A comprehensive summary, from the original argument to the present research state, has been given to the open question about the rotation and inversion mechanisms of the photoisomerization. Some relevant problems necessary to be further studied are put forward at the same time.Key words: Azobenzene, Isomerization, Mechanism, Photoresponsive偶氮苯及其衍生物是目前世界上使用量最大的一类染料。

近年来,偶氮苯的光响应特性使其在许多领域表现出巨大的应用潜力。

偶氮苯分子存在顺式和反式两种异构体。

在特定波长的紫外光照射下,反式构型的偶氮苯会转变为顺式构型;在可见光或热作用下,顺式构型可回复到反式构型。

两种构型的偶氮苯分子具有明显不同的紫外可见吸收光谱。

同时,两者的立体结构、偶极矩等一些物理和化学性质亦存在明显差异。

目前,偶氮苯顺反异构体的不同特性,以及顺反异构化诱导产生的各种光响应现象,引起了广泛的关注。

含偶氮基元的光响应性材料表现出很多独特的性能,如光动力纳微米机械[1,2]、光驱动分子开关[3]、信息存储[4]、表面起伏光栅及命令表面[5,6]、非线性光学材料及光子材料[7~9]等。

最近,随着各种偶氮苯类材料奇特性质的不断发现,偶氮苯分子的结构[10~12]、光谱特性[13,14]、异构化机理[15~20]、激发态衰减动力学过程[21~29]等重新引起了人们的极大兴趣。

1 偶氮苯热致顺反异构化机理相对于偶氮苯的光异构化,偶氮苯的热异构化机理较为简单。

但已有的相关文献对于偶氮苯分子的国家自然基金重点项目(50533040)热致顺反异构化机理还存在着一定争议。

一般而言,偶氮苯的热致顺反异构化有两种机理(图1):其一是通过N=N 键的旋转发生异构化,其二则是通过NNC 键角反转进行。

早期的实验和理论研究认为[30,31],无取代基的偶氮苯其热致异构化主要遵循NNC 键角的反转机理。

然而,当偶氮苯分子上有强推电子或拉电子取代基时,旋转机理也会发生作用。

在这种情况下,相互竞争的两种异构化途径受温度、压力、溶剂极性等实验条件的影响[32,33]。

最近,通过隧道扫描电镜(STM ),研究人员直接观察到单分子的反式4-氨基-4’-硝基偶氮苯通过CNN 键角反转发生异构化的过程[34]。

此外,新的理论计算还发现,偶氮苯的热致异构化还可能涉及单重态—三重态的转变[35]。

总之,从已有的文献结果不难看出,试图将不同实验条件下含各种不同取代基的偶氮苯的热致异构化过程归结为某一种异构化机理是不合理的。

图1. 偶氮苯的热致异构化通道:旋转和反转机理Figure 1. Thermal isomerization pathways of azobenzene: rotation and inversion mechanisms2. 偶氮苯光致顺反异构化机理就偶氮苯的光致顺反异构化而言,目前认为有三种异构化机理,如图2所示。

早期对偶氮苯反式→顺式光致异构化量子产率(Φ)的研究结果表明[36,37]:在可见光的激发下Φ值约为0.25,但在紫外光的激发下Φ值则降至0.1左右。

而在可见光和紫外光激发下,偶氮苯反式→顺式光致异构化量子产率分别为0.53和0.40。

从光谱学的观点来看,在可见光范围内,反式偶氮苯分子的吸收峰(约450nm 左右)对应于S 1(n →π*)态的激发,在紫外光范围的吸收峰(约320 nm 左右)则对应于S 2(π→π*)态的激发[36]。

反式偶氮苯光致异构化量子产率依赖于激发光波长的特性明显不符合Kasha 规则,因此,上述量子产率的实验结果说明了反式偶氮苯在S 1(n →π*)和S 2(π→π*)激发态的异构化过程可能源于两种不同的反应机理。

图2. 反式偶氮苯的光致异构化通道:旋转、反转和协同发反转机理Figure 2.Photoisomerization pathways of trans-azobenzene: rotation, inversion and concerted-inversion mechanisms反式偶氮苯 (TAB)顺式偶氮苯 (CAB)N=N 旋转NNC 面内反转NNC 协同反转内转换为基态反式偶氮苯 (TAB)顺式偶氮苯 (CAB) N=N 旋转NNC 键角反转1982年,Rau等[38]巧妙地设计了一个实验,将两个反式偶氮苯分子以碳硫键相连,使得分子中偶氮苯的苯环严格受限而无法进行平面外的旋转,即顺反异构化的过程只能由平面内的反转来完成。

对这种结构的偶氮苯分子(双硫偶氮苯衍生物和四硫偶氮苯衍生物)的异构化量子产率进行测定,发现不论是激发到S1(n→π*)还是S2(π→π*)态,所测得的Φ值均为0.25左右,即Φ值不随激发光的波长而变。

由于测得的Φ值与反式偶氮苯在S1激发态下的值相同,因此,Rau等提出反式偶氮苯在S1(n→π*)激发态下将通过面内的CNN键角反转发生顺反异构化,而在S2(π→π*)态下的顺反异构化则通过CNNC二面角的旋转进行。

同年,Monti等[39]利用量子化学的从头算(ab initio)方法对偶氮苯激发态的势能面进行了定性描述,其结果恰好符合Rau提出的异构化机理。

因此,上述异构化机理被广泛接受并用于许多瞬态光谱实验的分析和解释[40~42]。

最近,Renth等[43]以冠醚连接偶氮苯使苯环旋转运动受限,采用飞秒时间分辨荧光上转换光谱法,研究了这种旋转受限结构的偶氮苯分子激发到S1态后的衰减动力学行为,结果发现其与旋转不受限的偶氮苯分子具有相同的衰减时间常数,这一实验结果也支持Rau的模型。

但是,Rau提出的偶氮苯异构化机理也不断受到来自实验和理论计算研究的质疑。

最近,Diao等[22]也采用飞秒时间分辨荧光上转换光谱法,研究了两种旋转受限的偶氮苯衍生物在S1(n→π*)和S2(π→π*)激发态的超快衰减动力学过程。

结果表明,无论偶氮苯分子中苯环旋转是否受限,都能观察到S2→S1电子态的超快松弛过程(~100fs)。

这一时间尺度的超快松弛过程在偶氮苯的时间分辨吸收光谱实验中也得到了确认[24]。

Diao等认为,偶氮苯在S2激发态下发生旋转异构化并不有利,而在S1激发态下,苯环旋转受阻对衰减动力学过程产生显著影响。

显然,目前在S1激发态的瞬态光谱实验中,有关苯环旋转受限偶氮苯的研究结果还存在相互矛盾的地方。

Tahara等[28,29]曾利用不同的时间分辨光谱技术来研究偶氮苯激发态的衰减过程。

他们将反式偶氮苯分子激发至S2态,利用皮秒拉曼光谱技术来观测偶氮苯激发态的瞬时拉曼光谱。

实验观测到,反式偶氮苯从S2衰减到S1态后的瞬时拉曼光谱与其在基态(S0)的拉曼光谱具有非常类似的NN伸缩振动频率(S1态为1428cm-1,S0态为1440cm-1),因此推测反式偶氮苯分子在S1态应该具有类似于其在S0态的N=N双键结构且分子保持平面状态,从而认为偶氮苯在S1激发态的顺反异构化过程将由反转机制主导。

这一结论也得到了飞秒时间分辨光电子光谱实验的支持[26]。

由于并未观察到S2态任何扭曲结构的瞬时拉曼光谱,因此,Tahara等对于偶氮苯在S2激发态通过旋转机理发生异构化有异议。

为了进一步确认偶氮苯分子在S2激发态下是否发生旋转或反转的结构变化,Tahara等利用飞秒荧光上转换的瞬态光谱技术,研究了偶氮苯S2态的衰减动力学行为。

结果显示,偶氮苯S2→S1弛豫的量子产率接近1,结合前面的拉曼光谱实验,他们认为偶氮苯在S2激发态下根本来不及发生旋转异构化,而是发生S2→S1→S0的弛豫,异构化过程主要发生在S1和S0态且完全由反转机理主导。

然而,这个结论的根本问题在于它无法解释早年的异构化量子产率实验结果。

问题依然存在,争论还在继续。

早在1999年,Persico等[20]首先利用完全活性空间自洽场(CASSCF)方法并结合较大的基组,研究了偶氮苯沿着旋转和反转路径的激发态势能面。

其结果虽然也支持Rau的观点,但同时也指出并不排除S1态发生旋转异构化的可能性。

2001年,Ishikawa等[19]利用多参考态自洽场(MCSCF)方法计算了S1(n→π*)、S2(π→π*)以及S3(n2→π*2)三个激发态的二维(沿∠CNNC转动和∠CNN 反转路径)扫描势能面。

结果表明,在旋转路径的中间点(∠CNNC=88°及∠CNN=130°)存在着一个S0与S1态的圆锥交叉点(conical intersection:CI),因此他们提出,偶氮苯在S1激发态的顺反异构化理应由旋转机理主导。

相关主题