SolidStateCommunications145(2008)
197–200www.elsevier.com/locate/ssc
HalfmetallicityinPr0.75Sr0.25MnO3:Afirstprinciplestudy
MonodeepChakraborty∗,PrabirPal,BijuRajaSekhar
InstituteofPhysics,SachivalayaMarg,Bhubaneswar751005,India
Received15October2007;accepted20October2007byA.H.MacDonaldAvailableonline25October2007
Abstract
InthiscommunicationwepresentafirstprinciplestudyofPr1−xSrxMnO3withx=0.25.Whiletheparentcompoundsofthissystemareantiferromagneticinsulatorswithdifferentstructuralandmagneticgroundstates,thex=0.25isinthecolossalmagnetoresistanceregimeofthePr1−xSrxMnO3phasediagram[C.Martin,A.Maignan,M.Hervieu,B.Raveau,Phys.Rev.B60(1999)12191].Ourbandstructurecalculationsfortheend-pointcompoundsmatcheswellwiththeexistingtheoreticalandexperimentalresults[C.Martin,A.Maignan,M.Hervieu,B.Raveau,Phys.Rev.B60(1999)12191;RuneSondena,P.Ravindran,SveinStolen,TorGrande,MichaelHanfland,Phys.Rev.B74(2006)144102].Interestingly,ourcalculationsshowthatthePr0.75Sr0.25MnO3hasahalf-metalliccharacterwithahugebandgapof2.8eVintheminorityband.Webelievethisresultwouldfuelfurtherinterestinsomeofthesespecialcompositionsofcolossalmagnetoresistivemanganitesastheycouldbepotentialcandidatesforspintronicdevices.Wediscussthehalf-metallicityofthePr0.75Sr0.25MnO3inthelightofchangesintheorbitalhybridizationasaresultofSrdopinginPrMnO3.Further,wehighlighttheimportanceofhalf-metallicityforaconsolidatedunderstandingofcolossalmagnetoresistanceeffect.c2007ElsevierLtd.Allrightsreserved.
PACS:75.47.Gk;72.25.-b;71.20.-b
Keywords:A.Colossalmagnetoresistance;C.Half-metallicity;D.Electronicstructure
1.Introduction
Thecolossalmagnetoresistance(CMR)materialshave
attractedalotofattentionofthecondensedmattercommunity
owingtotheirspectacularinsulator-metaltransitionwith
magneticfield.FerromagneticA1−xBxMnO3(A=rareearth,
B=alkalineearth)exhibitsCMRpropertiesatparticular
concentrationsofxintheirrespectivephasediagrams.Half-
Metallicity(HM)hasbeenobservedinafewofthese
compoundsboththeoreticallyandexperimentally[3,4].Incase
ofhalf-metalsoneofthespinbands(generallythemajority
band)isconductingwhereastheotherband(generallythe
minorityband)isinsulatingattheFermilevel(EF).This
facilitates100%spinpolarization.Thispropertyofthehalf-
metalsmakethempotentialcandidatesforapplicationin
spintronicdevisesandmagneticsensors.TheCMReffectalong
withhigh-spinpolarizationaddtothetechnologicalimportance
∗Correspondingauthor.Tel.:+916742301058;fax:+916742300142.E-mailaddress:monodeep@iopb.res.in(M.Chakraborty).oftheCMRmanganites.Apartfromtheirgreatpotentialin
technology,thestronginterplayofthespin,orbitalandcharge
degreesoffreedomofthechargecarriersinvolvedinthis
insulator-metaltransition,holdsoutapromiseforrichphysics.
InthispaperwehavedoneafirstprincipleTight
Binding-LinearizedMuffinTinOrbital(TB-LMTO)[5,6]
calculationoftheend-pointcompositionsofPr1−xSrxMnO3andwithx=0.25doping.ForSrMnO3wehavedonethe
calculationwithlocalspindensityapproximation(LSDA).
ForPrMnO3andPr0.75Sr0.25MnO3wehadtoincorporate
theelectron–electroncorrelation(LSDA+U)toaccountfor
thebandgapinPrMnO3andtomatchourresultswiththe
availablespectroscopicdata.Moreover,thechargeandorbital
orderobservedindopedmanganitesalsomeritsaLSDA+
Utreatmentinordertoaccountfortheintra-shell(dand
f)Coulombinteraction[7].Allthethreecalculationshave
beendonewithVosko–Ceperley–Alderparametrizationforthe
exchangecorrelationenergyandpotential.Wehaveincluded
Langreth–Mehl–Hugradientcorrectionstotheexchange
correlation.Thek-meshusedforalltheseself-consistent
calculationswas10×10×10.Although,SrMnO3cantake
0038-1098/$-seefrontmatterc2007ElsevierLtd.Allrightsreserved.doi:10.1016/j.ssc.2007.10.025198M.Chakrabortyetal./SolidStateCommunications145(2008)197–200
bothcubicaswellashexagonalstructures[2],herewe
haveconsideredonlythecubic(distorted)polymorphofthis
perovskitesinceourmainmotivationistostudytheHMin
Pr0.75Sr0.25MnO3.Wehavealsocomparedthebandstructure
resultsofPr0.75Sr0.25MnO3withtheend-pointcompounds.
CrystalstructureofthePrMnO3systemistakenfroma
publishedneutrondiffractiondata.ForPr0.75Sr0.25MnO3we
havetakenthesamestructureasPrMnO3withonePratom
replacedbyadivalentSr.
Electron-latticecoupling(ELC)hasaveryimportantrolein
thephysicsofmanganites.Theyshowupintwoways.Firstis
thesocalled“tolerancefactor”[8]involvingthestaticeffect
ofcrystalstructureonelectronhopping,whichhasadirect
effectonconductivity.Theatomicsizedifferencebetween
therare-earthatomsandthedivalentdopantsresultsinan
internalstresswhicheffectstheMn–O–Mnbonds.Theelectron
hoppingbetweentheMnsitesisinverselyproportionaltothe
compressionoftheMn–O–Mnbonds.ThistypeofELCof
PrMnO3hasbeentakenintoaccountinourcalculations.
TheimportanceofdifferentJahn-Tellermodesandpolarons
inaccountingtheproperinsulatingA-typeantiferromagnetic
(AFM)groundstateofundopedLaMnO3hasbeendealtby
severalgroups[3,9,10].ThesecondtypeofELCisthedynamic
ELCwhichcouplesthelatticevibration(phonons)with
electronicdegreesoffreedom.SinceTB-LMTOcalculations
arebasedonadiabaticapproximationwhichdecouplesthe
electronicandthelatticedegreesoffreedom[8],accounting
forthedynamicELCisbeyondthescopeofthiswork.
Bandstructurecalculationscanprovideonlyaqualitative
descriptionofanysystemasthestructuralcomplications
thatexistinrealsystemsaredifficulttoaccommodateina
calculation.Although,weassumeproperstoichiometry,cation
vacancyandoxygennon-stoichiometryareacommoninreal
systems.AgaininPr0.75Sr0.25MnO3wehaveassumedthe
crystalstructureofPrMnO3.TheeffectofPr/Srdisorderand
localstrainsandrelaxationshavenotbeentakenintoaccount.
ButstillourpredictionofHMinPr0.75Sr0.25MnO3isrobust
enoughtomeritattention.
2.SrMnO3
CubicSrMnO3hasaG-typeAFMgroundstatewitha
latticeparameter[2]of3.824A.Ourcalculationswithdifferent
magneticconfigurationshaveshownthatthisG-typeAFM
stateturnsoutbethemoststable,inagreementwithearlier
reports[2].InthisworkwehaveusedonlytheG-typeAFM
structure.ResultsofourTB-LMTO(LSDA)calculationsare
showninFig.1.Thetotalandsite-projecteddensityofstates
(PDOS)clearlyrevealsabandgapof0.34eVwhichissimilar
tothatobtainedbyotherbandstructurecalculations[2]on
thissystem.ThenearEFstatesaredominatedbyMn3dand
O2p.ThenearEFvalancebandshowsastrongMn3d–O2p
hybridization.Although,Srstateshaveaverylittlepresence
nearEF,theyappeartobehybridizedwiththesignificantO
statesthroughoutthevalenceband.Itisclearfromthefigure
thattheconductionstatesaredominatedmainlybyMn.We
haveestimatedthemagneticmomentofindividualMn
atomFig.1.Thespinresolvedtotalandsite-projecteddensityofstatesofSrMnO3.Thetopleftpaneldepictsthetotaldensityofstatesforthemajorityandminorityband.Thebandgapis0.34eV.ThetoprightpanelshowsthespinresolvedMnPDOS.ThebottomleftpanelshowstheSrPDOSandthebottomrightshowstheOPDOS.
tobe2.48µβwhichisagainsimilarto2.47µβobtainedby
calculationsusingtheViennaAb-InitioSimulationPackage
(VASP)[2].Thisvalueofthemagneticmoment,whichis
lowercomparedtothatoffreeMn4+ion(3µβ,neglectingthe
orbitalcontribution),indicatesthestronghybridizationofthe
MnandOstatesincubicSrMnO3.Itshouldbenotedthat
theshapeoftheOPDOSandtheMnPDOSnearEFhave
strikingsimilarities,whichhintsatastrongcovalentbonding.
ThisinferenceissupportedbytheCrystalorbitalHamiltonian
population(COPH)analysisdonebyRuneSondenaetal.[2].
3.PrMnO3
LSDA+Uband-structurecalculationsforPrMnO3were
donefortheA-typeAFMphaseusingthecrystalstructure
(spacegroup:Pbnm(62))takenfromaneutrondiffraction
result[11]publishedearlier.TheLSDA+Umethodwas
employedmainlytoaccountforthestrongelectroncorrelation
whichisbehindtheinsulatingnatureofthismaterial[1].Unlike
inLaMnO3wheresimpleLSDAcanreproducethebandgap,
inPrMnO3theLSDA+Utreatmentisessentialtoderivea
realisticvalueofthegap.Inourcalculation,wehavetakenthe
exchangetermJandthecorrelationtermUforPr4fstateto
be0.95eVand7eVrespectivelyandthoseforMn3dtobe
0.87eVand4eVrespectively.
Fig.2showsthespinresolvedtotalandsiteprojected
densityofstatesofPrMnO3.OurLSDA+Ucalculation
showsaninsulatingA-typeAFMgroundstateforPrMnO3.
Wehaveestimatedthebandgaptobe0.11eV.Here,the
electron–electroncorrelationthathasbeenincorporated,was
foundtobecruciallyimportantforobtainingthebandgap.
AsimpleLSDAcalculationofthissystemdoesnotgivean