基于FPGA的高精度频率计设计摘要频率计是一种应用非常广泛的电子仪器,也是电子测量领域中的一项重要内容,而高精度的频率计的应用尤为广泛。
目前宽范围、高精度数字式频率计的设计方法大都采用单片机加高速、专用计数器芯片来实现。
传统的频率测量利用分立器件比较麻烦,精度又比较低,输入信号要求过高,很不利于高性能场合应用。
本论文完成了高精度数字频率计硬件设计和软件设计。
该数字频率计主要包括FPGA和单片机两大部分。
其中FPGA部分又可分为数据测量模块、FPGA和单片机接口模块、FPGA和数码管动态扫描部分。
FPGA部分采用verilog语言编写了电路的各模块电路,选用了当前比较流行的EDA开发软件Quartus II作为开发平台,所有模块程序均通过了编译和功能仿真验证。
对测频系统的设计流程、模型的建立和仿真做出了具体详细的研究,验证了该系统的正确性。
单片机部分采用C51编写了控制软件。
本设计中以FPGA器件作为系统控制的核心,其灵活的现场可更改性,可再配置能力,对系统的各种改进非常方便,在不更改硬件电路的基础上还可以进一步提高系统的性能。
关键词:频率计,单片机,FPGA,电子设计自动化Design of High-accuracy Digital Frequency MeterBased on FPGAABSTRACTFrequency meter is a kind of electronic instrument applied widely. A kind of high-accuracy digital frequency meter is designed based on FPGA in this paper.At present extends the scope,the high accuracy digital frequency meter's design method to use the monolithic integrated circuit to add, the special-purpose counter chip mostly to realize high speed.The design of system hardware and system software is accomplished in the paper. System consists of FGPA and MCU. The circuit based on FPGA includes following some parts: data acquisition module, interface between FPGA and MCU, module scanning number tube. Every circuit module is realized by verilog.The platform of development is Quartus II and all modules procedure is demonstrated by compiling and simulation. Detailed research of design flow, model establishment and system simulation is done. The correctness of the system is demonstrated. The software based on MCU is programmed by C51.In this design takes the systems control by the FPGA component the core, its nimble scene alterability, may dispose ability again, is convenient to system's each kind of improvement, in does not change in hardware circuit's foundation also to be possible to further enhance system's performance.The system has the advantage of high-accuracy and convenience. It’s practicability of frequency meter is well.KEY WORDS: Frequency meter, MCU, FPGA, electronic design automation目录摘要........................................................................................................................................ I ABSTRACT .............................................................................................................................. I I 第1章绪论 (1)1.1研究背景及意义 (1)1.2国内外研究现状 (1)1.2.1 频率计的测量方法 (1)1.3EDA技术简介 (3)1.4本论文内容及安排 (4)第2章频率测量方法与原理 (6)2.1直接测频法 (6)2.2利用电路的频率特性进行测量 (7)2.2.1 电桥法测频 (8)2.2.2 谐振法测频 (8)2.2.3 频率—电压转换法测频 (8)2.3等精度测量法 (8)2.4本章小结 (10)第3章系统总体设计方案 (11)3.1频率计系统设计任务与分析 (11)3.1.1 频率计系统设计任务要求 (11)3.1.2 频率计系统设计任务分析 (11)3.2系统总体设计方案 (11)3.3FPGA内部功能模块设计 (12)3.4本章小结 (14)第4章系统的硬件电路设计 (15)4.1FPGA部分的硬件设计 (15)4.1.1 FPGA简介 (15)4.1.2 FPGA芯片的选型 (15)4.2单片机部分的硬件电路设计 (17)4.2.1 单片机的选型原则 (17)4.2.2 单片机控制电路的设计 (18)4.3外围电路设计 (19)4.3.1 键盘接口电路 (19)4.3.2 显示电路 (19)4.3.3 电源电路 (20)4.3.4 信号放大整形电路 (20)4.3.4 其它电路 (21)4.4本章小结 (22)第5章系统的软件设计 (23)5.1VERILOG HDL语言简介 (23)5.2QUARTUS II软件简介 (24)5.3基于EDA技术的设计方法 (25)5.3.1 自底向上的设计方法 (25)5.3.2 自顶向下的设计方法 (26)5.4FPGA内部功能模块设计 (26)5.4.1 D触发器模块 (27)5.4.2 32位高速计数器模块 (28)5.4.3 二选一选择器模块 (29)5.4.4 并—串转换接口模块 (31)5.4.5 串—并转换接口模块 (31)5.4.6 二进制数到8421BCD码转换模块 (32)5.4.7 LED动态扫描显示控制模块 (33)5.5单片机部分的软件设计 (35)5.6本章小结 (36)第6章结论 (37)致谢 (39)参考文献 (40)附录I 顶层原理图 (42)附录II VERILOG程序源代码 (43)基于FPGA的高精度频率计设计 1第1章绪论1.1 研究背景及意义在电子测量技术领域内,频率是一个最基本的参数。
它不仅是各种强弱电信号的物质本质参数之一,还因为频率信号的抗干扰性强、易于传输、可以获得较高的测量精度等特点使各种非电信号,诸如速度、力、图像、音讯等物理量都可以转换为电频率信号。
因此工程中很多测量,如用振弦式方法进行力的测量、时间测量、速度测量、速度控制等都涉及到频率测量[1]。
因此,研究频率计具有一定的实用价值[2]。
数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号以及其它各种单位时间内变化的物理量[3]。
在测控系统中,测频方法的研究越来越受到大家的重视,多种非频率量的传感信号都要转化为频率量来进行测量,而频率计作为测量频率的仪器被广泛应用于工业生产、实验室、国防等领域。
1.2 国内外研究现状由以上所述可见,研究设计一种测量精度高、测频范围广、在更小的空间内实现更多的功能、有灵活的现场可更改性的高精度数字频率计显得越来越重要。
本课题正是针对于此,研究、设计一种频率计,旨在提高频率测量的高精度、及时性等性能指标。
下面就简单的介绍下国内外关于数字频率计的研究现状。
1.2.1 频率计的测量方法目前频率测量的方法有很多,在进行频率测量时,往往关心的是频率所测量的范围、精度要求以及被测对象的特点。
而测量所能达到的精度,不仅取决于所测的频率源的精度,而且取决于所使用的测量设备和测量方法。
目前测量频率的方法有多种,频率计的种类也各种各样。
频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
典型的传统的方法是计算每秒内待测信号的脉冲个数,此时闸门时间为1秒。
闸门时间也可以大于或小于1秒。
闸门时间越长,得到的频率值就越准确,但闸门时间越长则每测一次频率的间隔就越长;闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响[4]。
1)常用的数字频率的测量方法可以分为:陕西科技大学毕业设计说明书 2(a) 直接测量法(以下称M法)M法是在给定的闸门时间内测量被测信号的脉冲个数进行换算得出被测信号的频率。
这种测量方法的测量精度取决于闸门时间和被测信号频率。
当被测信号频率较低时将产生较大误差,除非闸门时间取得很大。
所以这种方法比较适合测量高频信号的频率。
(b) 周期测量法(以下称T法)T法是通过测量被测信号的周期然后换算出被测信号的频率。
这种测量方法的测量精度取决于被测信号的周期和计时精度,当被测信号频率较高时,对计时精度的要求就很高。
这种方法比较适合测量频率较低的信号。
(c) 综合测量法(以下称M /T法)M /T法具有以上两种方法的优点,它通过测量被测信号数个周期的时间然后换算得出被测信号的频率,可兼顾低频与高频信号,提高了测量精度。