第13章 海 杂 波 Lewis B.Wetzel 13.1 引言
就一部正在工作的雷达而言,海表面对发射信号的后向散射常常严重地限制了其对舰船、飞机、导弹、导航浮标以及其他和海表面同在一个雷达分辨单元的目标的检测能力。这些干扰信号一般被称为海杂波或海表面回波。由于海表面对雷达来说是一个动态的、不断变化的平面,因而对海杂波的认识不仅要寻求一个合适的模型来描述海表面的散射特性,而且还要深入了解海洋的复杂运动。幸运的是,在遥感领域内,雷达和海洋学间的联系日益密切,并已积累了大量关于海表面散射,以及这些散射是如何与海洋变化相关的有用资料。 在各种雷达参数和环境因素的条件下,直接测量它们对雷达回波的影响,然后按照经验来描述海杂波的特征似乎是一个简单的问题。与雷达或其工作配置相关的参数,如频率、极化方式、分辨单元尺寸和入射余角(擦地角)均可由试验者指定,但是环境因素则全然不同。这有两个原因:首先,不清楚哪些环境因素重要。例如,风速无疑会影响海杂波电平,但是舰船风速计读数和海杂波间的关系并不完全相符。海表面的搅动状态(海表面状态)对海表面散射特性看起来似乎有很大的影响,但这仅是主观的量度,它与当地盛行的天气间的关系通常是不确定的。其次,人们还发现,所测得的风速与其形成的海浪(造成杂波的海浪)有关,而空气和海表面的温度能影响这种关系。可是,在过去海杂波测量的历史中,这些影响的重要性并没有得到人们的重视,因而很少记录下空气和海表面的温度。即使人们已经意识到某个环境参数的重要性,但是要在实际的海洋条件下精确测量这个因素通常也是非常困难的。并且要建立任意一种具有实际意义的海杂波统计模型,还须从不冰封的海洋环境中收集足够多的各种参数条件下的测量结果,这也受到实际可能性和经费的限制。因此,大家不必对海杂波某些特征定义的不完全感到惊讶。 在20世纪60年代末之前,绝大多数的海杂波数据都是从独立的实验中一小段一小段收集起来的,它们的真实性通常不强或不全面(可查阅以往的著作,如Long[1],Skolnik[2]或Nathanson[3])。然而,尽管许多早期的海杂波数据的科学价值有限,但是它们的确揭示了海杂波的某些一般规律,如在小和中等的入射余角间,海杂波信号的强度随入射余角的增大而增大,随风速(或海表面状态)的增强而增强,并且在垂直极化和逆风-顺风方向时杂波信号强度通常较大。 必须指出的是,在A显上观测海杂波时,在很大程度上取决于分辨单元的尺寸或“雷达脚印(radar footprint)(雷达天线波束照射到海表面的覆盖区的大小)”。对于大的分辨单元,海杂波在距离上呈现为分布式的,其特征可用平均表面截面积(它在一个均值上下轻微起伏)来描述。随着分辨单元尺寸的减小,海杂波表现为孤立(或离散)的类似于目标的时变回波。在高分辨情况下,通常认为分布式海杂波是由密集的离散回波序列组成的。当离散回波在噪声背景中能清晰显现时(正如它们在两种极化条件下都是可见的,并且在小的入射余角时水平极化回波最清晰),它们被称为海浪尖峰(Sea spikes)信号。在这种雷达体制中,海浪尖峰是常见的海杂波。 人们试图从理论上解释所观测到的海杂波特性,这些努力可追溯到二战期间雷达工作者所从事的研究,可参阅由Kerr编辑的著名的麻省理工学院(MIT)辐射实验室手册[4]。但令人遗憾的是,在这期间所发展起来的散射模型,以及在这之后10年间学者发表的绝大多数模型,都不能令人信服地解释海表面后向散射的特性。可是,Crombie在1956年观测到,海表面对高频波长(几十米)的散射似乎是入射波与高度为入射波长一半的海浪相互谐振的结果,也就是Bragg模型[5]。由于受到各种低浪高近似法理论含义和理想条件下的浪池测量(Wave tank measurements)的支援,因此许多研究者[6]~[8]在20世纪60年代中期便把Bragg模型引入到微波雷达中。由于该模型开始涉及海波频谱(Sea wave spectrum),因而引发了一场探索海杂波源的革命,并由此强化了海杂波机理和海洋学的联系,产生了无线电海洋学。应用微波散射Bragg模型所遇到的基本概念问题,以及最近关于预测的有效性和其他散射假说可能性的问题,使人们重新开始讨论海洋散射的物理起源及如何建立最佳的模型[9]~[14]。由于这个原因,人们对海表面物理模型的思索仍停留在使它最接近于海杂波的实验特性。后续内容将单独讨论海杂波建模的问题。
13.2 海表面的描述
对海表面的近距离观测揭示了它各种各样的特征,如浪谷、浪楔、波浪、泡沫、旋涡、浪花,以及海浪下落时形成的大大小小的水花。所有这些面貌特征都对电磁波产生散射,形成海杂波。对海表面的基本海洋学描述应主要是海波频谱——尽管很少提及这些特性,因其不仅包含了大量的海表面信息,而且还是应用Bragg模型的关键。为了理解海杂波和Bragg模型对现有海杂波模型的重要性,还需要了解海表面。鉴于此,后文所述的内容将包括一些用于描述海表面的频谱特性。 根据占主导地位的海表面恢复力是表面张力还是重力,表面波基本上可分为两种,即表面张力波和重力波。这两种波的过渡出现在2cm波长附近。因此,较小的表面张力波可显示海表面细微的结构,而重力波则显示的是更大的和大多数可见的海表面结构。风是海浪的最初源头,但这并不意味着“本地”风是其下面海浪形成的最好标志。为了使海表面处于稳定状态,风必须在足够大的区域(风浪作用区)内且吹上足够长的时间(持续时间)。那部分由风直接引起的波浪称为风浪。但是由于远方波浪或是远方风暴的传播,即使在没有“本地”风的情况下,也可能存在明显的“本地”海浪运动。这种类型的海浪运动称为涌波(Swell)。由于海表面的传播特性类似于低通滤波器,因此涌波分量通常类似于大峰值低频的正弦波。
海波频谱 海波频谱有几种形式,是对海表面最基本的海洋学描述。如果在一个固定点监视海表面高度的时间规律,并通过处理得到时间序列,便可得到海表面高度的频谱S(f)。其中,S(f)d f是其在频率f和f+d f之间的能量量度(如波高的平方)。在开阔的海洋中,人们已经对波长小至1m左右的重力波的波谱进行过测量。而要完成对表面张力波的露天测量却非常困难[15]。 对于重力波,频率f和波数K的离散关系式为 )()2/1(2/1Kgf (13.1) 式中,g为重力加速度;K=2/,为波长。尽管每个重力波都遵循该关系式,但是海表面上某点的波浪可来自任意方向。因而,重力波的特性可用二维传播矢量来表示,它的正交分量是Kx和Ky,式(13.1)中K的幅度为K=(Kx2+Ky2)1/2。 与S(f)相关的海浪波数频谱(The wavenumber spectrum)是K矢量两个分量的函数,并常表示为W(Kx,Ky),人们称之为方向波谱(Directional wave spectrum)。方向波谱表示的是与风、海流、折射和独立的余波分量相关的不对称性。对于一个给定的非对称源(如风),频谱的不同分量将显示不同的方向特性。例如,在稳定的海表面,较大的海浪将趋向于风的方向,较小的海浪则显得无方向性。方向波谱更难于测量,它通常是通过各种实验手段来获得,如用于测量多点矩阵表面高度的浪标阵列(Array of wave staffs)、多轴加速计浮标和立体摄影术,甚至可通过处理雷达后向散射信号来获得。因在某一点上测到的频谱可能不包含海浪方向的信息,所以波数频谱W(K)通常用频谱S(f)来定义。它们的关系式为 )d/d))((()(KKKffSW (13.2)
式中,f和K的关系由式(13.1)给出。为了说明风的方向,W(K)有时乘上一个K的经验函数和一个与逆风方向有关的方向因子v。 海洋学学者并不总是完全赞同采用频谱来定义,因不稳定的海洋状态、不足的采样时间及可信度差等因素都损害了导出经验频谱的数据。在确保数据来自稳定的海表面及风速在相同的参考高度测量的条件下,通过认真选择实验数据,Pierson和Moskowitz建立了一个经验频谱[16]。该经验频谱被证明是通用的和有效的,形式为 e)()/(5m4ffBfAfS (13.3) 式中,g为重力加速度;fm=g/2U ;fm相当于以风速U流动的海浪的频率;A和B为经验常数。图13.1是几种不同风速的频谱曲线。风速增大的作用仅仅可将低频截止点沿着高频f-5渐近线移至更低的频率(必须指出的是,绝大多数海洋学学者采用的频谱都是在非常低的频率下测量得出的,所以当测量频率高于2Hz时,对其结果不能过于认真。不过,在运用Bragg模型预测雷达海杂波时,在20Hz或更高的频率范围内,人们通常也采用这些频谱形式)。 若利用式(13.2)将频谱转换为无方向的波数频谱,则可得到一个形式相似的谱,但频谱的渐近线为K-4。Phillips[17]通过用锐截止线代替图13.1中的平滑峰值,在空间域中导出了这种渐近线特性和一种应用广泛的简化形式。这一简化形式通常称为Phillips频谱,在波数空间中可写为
UgUgKW224/0//005.0)(KK
K
(13.4)
式中,截止波数对应于式(13.3)中的峰值频率fm。与此简单形式相反的是越来越复杂的频谱形式,它们大多是在更细微的经验研究[18]及更加复杂的理论考虑基础上推导出来的[19][20]。 在利用海表面频谱讨论海表面散射特性时,必须牢记的是,频谱是一种高度平均的描述形式。它描述有海浪存在时,海表面能量在海表面波数或频率间的分布。由于丢失了相位信息,因此频谱不包含海表面自身的形态信息,如产生散射场的复杂表面特性。这一点在后面对海杂波理论的介绍中还将提及。