1.水电厂在电力系统中的作用:1担负系统的调频、调峰任务。电能不能大量存储,其生产、输送、分配和消耗必须在同一时间内完成。为了保持系统的频率在规定的范围内,系统中就必须有一部分发电站和发电机组随负荷的变化而改变出力。以维持系统内发出的功率和与消耗的功率平衡。对于变化幅度不大的负荷,频率的调整任务主要是由发电机组的调速装置来完成。对于变化幅度较大、带有冲击性质的负荷,则需要有专门的电站或机组来承担调频的任务。2担负系统的备用容量。具有一定的备用容量,是电力系统进行频率调整和机组间负荷经济分配的前提。由于所有发电机组不可能全部不间断地投入运行,而且投入运行的发电机组也不是都能按额定容量工作,故系统中的电源容量并不一定等于所有发电机组额定容量的总和。为了保证供电可靠性和电能质量,系统的电源容量应大于包括网损和发电站自用电在内的系统总负荷。。。。
2.电力系统备用容量分类:1负荷备用。用于调整系统中短时的负荷波动,并满足计划外负荷增加的需要。这类备用容量应根据系统负荷的大小、运行经验和系统中各类用户的比重来确定,一般为系统最大负荷的2%—5%。2事故备用。用于代替系统中发生事故的发电设备,以便维持系统的正常供电。事故备用容量与系统容量、发电机台数、单机容量、各类型发电站的比重和供电可靠性的要求等因素有关,一般约为系统最大负荷5%—10%,并不应小于系统中最大一台机组的容量。3检修备用。是为定期检修发电设备而设置的,与负荷性质、机组台数、检修时间长短及设备新旧程度有关。。。。
3.水电厂自动运行的内容:1自动控制水轮发电机组的运行,实现开停机和并列、发电转调相和调相转发电等自动控制程序。2自动维持水轮发电机组的经济运行。3完成对水轮发电机组及其辅助设备运行工况的监视和对辅助设备的自动控制。4完成对主要电气设备(如主变压器、母线和输电线路等)的控制、监视和保护。5完成对水工建筑物运行工况的控制和监视,如闸门工作状态的控制和监视,拦污栅是否堵塞的监视,上下游水位的测量监视、引水压力钢管的保护等。 4.水轮发电机组同期方式及其优缺点:1准同期方式是将发电机组调整到符合并网条件后,再发出断路器的合闸命令。2自同期并列的操作是将未加励磁电流的发电机组的转速升到接近额定转速,再闭合断路器,然后立即合上励磁开关供给励磁电流,在发电机电势逐渐增长的过程中由系统将发电机组拉入同步运行。3两种同期方式具有各自的优缺点。系统在正常运行情况下,一般采用准同期并列方式将发电机组投入运行;自同期并列方式操作简单,速度快,在系统发生故障、频率波动较大时,发电机组仍能并列操作并迅速投入电网运行,可避免故障扩大,有利于处理系统事故,只有当系统发生故障时,为了迅速投入水轮发电机组才采用,应用此方式时要求发电机定子绕组的绝缘及端部固定情况良好,端部接头应无不良现象。。。。
5.允许断路器并列的理想条件:1电压幅值相等,即UG=US或UGm=USm。2电压角频率相等ωG=ωS或电压频率相等,即fG=fS。3合闸瞬间的相角差为零,即δ=00(δ为发电机侧电压与系统侧电压的相角差)。。。。 6.准同期并列的实际条件:1待并发电机电压和系统电压接近相等,其电压差不超过5%—10%额定电压。2待并发电机电压与系统电压的相角差δ,在并列瞬间应接近于零,不大于100。3待并发电机频率与系统频率接近相等,其频率差不超过0.2%—0.5%额定频率。。。。线性整步电压的获取一般由整形电路、相敏电路及滤波电路组成。具有以下特点:1当UG点与US点完全反相,即δ=1800时,USL的最低值为0,当UG点与US点完全同相,即δ=00(或3600)时,USL出现最大值USLm。USL的最大值保持固定不变。2整步电压的前半部分和后半部分均为直线,其斜率和频差绝对值成正比,反映了频差的大小,如果在一个周期内频差不变,则USL以通过最高点的垂直线左右对称。3线性整步电压波形,顶值电压与电压UG点、US点的幅值无关,因而不包含压差信息。。。。同步力矩:是由发电机转子磁场与定子旋转磁场相互作用而产生的,在发电机加上励磁后才出现,并逐渐上升到稳定值。异步力矩:是指发电机转速不等于同步转速时,转子闭合回路中产生的感应电流将和定子旋转磁场相互作用而产生的力矩,其大小和滑差率、转子结构及转子回路所处的状况等因素有关。
7.同步发电机励磁控制系统的任务:1调节电压。电力系统正常运行时,负荷是随机波动的。随着负荷的波动,需要对励磁电流进行调节,以维持机端或系统中某点电压在给定水平,所以励磁系统担负着维持电压水平的任务。2控制无功功率的合理分配。在实际运行中,与发电机并联运行的母线并不是无限大容量母线,即系统的等值电抗并不等于零,母线的电压将随着负荷波动而变化。发电机输出的无功电流与它的母线电压水平有关,改变其中一台发电机的励磁电流不但影响其本身的电压和无功功率,而且也影响与其并联运行机组的无功功率。3提高电力系统运行稳定性。电力系统在运行中随时都可能受到各种干扰,在这些扰动后,发电机组能够恢复到原来的运行状态,或者过渡到另一个新的稳定运行状态,则系统是稳定的。4改善电力系统运行条件。当电力系统由于种种原因,出现短时低压时,励磁控制系统可以发挥其条件功能,即大幅度地提高励磁电流以提高系统电压。改善异步电动机的自启动条件,为发电机的异步运行创造条件,调高继电保护动作的灵敏度。5根据水轮发电机组要求实行强行减磁。当水轮发电机组发生故障突然跳闸时,由于水轮机调节系统具有较大的惯性,导叶不能迅速关闭,使发电机转速急剧上升。如果不采取措施迅速降低励磁电流,则发电机电压有可能升高到威胁定子绝缘的程度。所以这种情况下要求励磁控制系统能实现强行减磁。。。。
8.励磁控制系统对静态稳定的影响:当功率角δ<900时,发电机是静态稳定的。当δ>900时,发电机不能稳定运行。δ=900为稳定的极限情况。实际运行时,为了可靠起见留有一定的裕度,运行点往往比功率极限低一些。如果励磁系统具有按电压偏差调节的励磁调节器,并设发电机开始运行于在功率曲线的a点。当系统负荷增加时,为保持机端电压不变,励磁调节器必将增加励磁电流,使Eq增加,运行点将过渡到波幅较高的另一功率特性曲线上,以此类推。具有励磁调节器时,由波幅连续增高的一簇功率特性曲线上的各运行点构成了一条新的功率特性曲线。显然具有励磁调节器时发电机功率角δ能在大于900范围的人工稳定区运行,即可提高传输的功率极限或系统的稳定储备。。。。
9.励磁控制系统对暂态稳定的影响:励磁系统对于提高暂态稳定而言,主要表现在快速励磁和强励的作用上。现以单机到无穷大系统为例,设在正常运行情况下,发电机输出功率为Po,在功率特性的a点运行。当突然收到某种扰动后,运行点由曲线Ⅰ上的a点突然变到曲线Ⅱ上的b点。由于原动力部分存在惯性,输入功率仍为Po,而所需功率减小,于是发电机轴上将出现过剩转矩使转子加速,运行点由b沿曲线Ⅱ向F点移动。过了F点后,发电机输出功率大于Po,发电机轴上将出现制动转矩,使转子减速。发电机能否稳定运行取决于曲线Ⅱ与Po直线间所形成的上下两块面积是否相等,即所谓的等面积法则。在上述过程中,发电机如能强行增加励磁,使受到扰动后的发电机组运行点移动到功率特性Ⅲ上运行,这样不仅减小了加速面积,也增大了减速面积,从而使发电机第一摆时功角δ幅值减小,改善了发动机的暂态稳定性。
10.电极式水位信号器:电极式水位信号器主要用于当水轮发电机做调相运行时,监视水轮机转轮室的水位,与SXZ—2型水位信号装置配合给转轮室供压缩空气,使转轮室水位保持在水轮机转轮以下,减少机组有功损耗。有时也用于监视水轮机顶盖和集水井水位。电极式水位信号器DJ有两个相互绝缘的电极,通常是不接通的,当水位上升把两个电极都浸入水中时,利用水的导电性,使两个电极成为电的通路,发出相应的水位信号。DJ—02型电极式水位信号器由电极、底座和盖组成,共有两个,分别对应上、下限水位。SZX—2型水位信号装置由电流继电器、变压器及桥式整流器等组成。两者配合工作原理为当机组由发电转为调相运行时,调相继电器KS41触点闭合自动投入SZX的电源,此时两电机DJ1和DJ2都浸在水中,靠水的导电性,电流继电器KA动作,发出高水位信号而动作于打开充气阀,并使KA41闭合自保持。此时水位降至上限水位以下,仍能靠下电极保持KA在动作状态。在压缩空气的继续作用下,水位降至下电极以下使KA断电释放,充气电磁阀关闭而停止充气。当水位又上升时,重复上述操作过程。。。。
11.转速信号器:1线路故障跳闸、机组甩负荷或其他原因致使机组转速剧烈上升至额定转速的140%时,发出机组紧急事故停机和关闭快速闸门的过速信号。2机组转速达到额定转速的115%时,发出事故停机信号。3开机过程中,当机组转速升至额定转速的90%—95%时,使机组自同期装置发出同期合闸信号,或使自动准同期装置开始投入工作。4机组调相运行当中,机组转速下降至额定转速的70%—85%时,发出调相失电信号,使机组转发电或使断路器跳闸停机。5停机过程中,机组转速下降到额定转速的30%—35%(具体视机组推力轴承材质不同而异,如当前塑料推力轴承的机组,加制动的转速一般都选的比较低,在额定转速的15%—20%)时,发出制动信号进行机组刹车。。。。
12.执行元件:1电磁阀。电磁阀主要用于油
、水、气管路的自动启闭,它将电气信号转换为管路自动启闭的机械信号,它由电磁机构和阀体两部分组成。水电厂常用的有DF1型电磁阀和ZT型直流电磁阀操作的电磁阀。DF1型电磁阀在水电厂中主要用于制动系统、调相补气及冷却系统等的油水气的管路上作自动阀门。DF—50型电磁阀通过ZT型直流电磁铁来实现远距离控制阀门的启闭。2DK型电磁空气阀。电磁空气阀主要用于机组的制动系统和主阀密封围带压缩空气管路的通断自动控制。DK—2型可适用于弱电控制,是一种小功率型的电磁空气阀。DK—20型配用单线圈电磁铁,可长期通电工作。其他类型配用双线圈电磁铁,短时通电,断电自保。3电磁配压阀。电磁配压阀是一种由电磁铁控制的润阀,主要用于液压系统的油管路上,借以变换被控液压元件的油流方向,实现远方控制。电磁配压阀一般与液压阀配合使用,工作原理为利用双线圈电磁铁驱动,切换润滑油路,利用压力油去控制液压阀的开启与关闭。
13.机组起动操作程序:1启动应具备条件:蝴蝶阀全开、机组无事故、制动阀无压、接力器锁锭拔出、断路器跳开。2上述条件具备时,起动准备继电器动作,开机准备灯燃亮。此时发出开机令,机组起动继电器动作。同时开启冷却水电磁配压阀向各轴承冷却器供水。投入QDM及接入准同期装置的调整回路。接通开限机构的开启回路及转速调整机构增速回路。起动开、停机过程监视继电器。3总冷却水投入后,示流信号器动作,其动合接点闭合,将开限机构打开至空载开度位置,同时使调速器开机电磁阀励磁,机组随即按调速器起动装置的控制特性起动。4当机组转速达到额定转速的90%时,自动投入准同期装置,条件满足后发电机以准同期方式并入系统。5并列后,通过断路器位置重复继电器作用于下列各处。开限机构自动从空载转至全开,转速调整机构正转带上一定负荷,发电运行继电器励磁,使中控室发电运行指示灯亮。6机组开机成功后,机组起动继电器复归。有功功率的调节可借助远方控制开关进行增或减有功调节。。。。
14.机组停机操作程序:1正常停机时,操作发出停机命令,机组停机继电器励磁,并由其动合接点闭合而自保保持。2起动开停机过程监视继电器,监视停机过程。3转速调整机构反转,卸去全部负荷至空载。4当导叶关至空载位置时,控制发电机断路器跳闸,机组与系统解列。5导叶关闭至空载位置以及机组与系统解列后,导叶继续关至全关位置,同时使开限自动全关。6机组转速下降到35%额定转速时,转速信号器动作,使制动系统电磁空气阀励磁而打开,压缩空气进入制动间对机组进行制动,同时监视制动时间。7延时2min后,停机继电器复归,制动电磁空气阀励磁,压缩空气自风闸排出解除制动,监视停机过程和制动的时间继电器相继复归,停机过程即告结束。此时机组重新处于准备开机状态,起动准备继电器励磁,中控室的开机准备灯点亮,为下一次起动创造了必要的调节。
填空题——1同步发电机并列的理想条件表达式为fG=fX、UG=UX、δe=0。2若同步发电机并列的滑差角频率允许值为ωsy