催化剂制备及应用技术 1 水热法制备催化剂的研究进展 杨琴 201010703124 再生资源科学与技术101班 摘要:催化剂的制备是催化剂研究开发的一个重要方面,是影响催化剂性能的重要因素。本文综合概述水热法制备催化剂的技术特点,水热法制备催化剂的研究现状和进展,并介绍了水热技术与其他方法的组合与创新。 关键词:催化剂;水热技术;
Research progress on the preparation of catalyst with
the hydrothermal method Abstract: The preparation of catalyst is one of the most important aspects of the research and development of it, acting as an important factor showing influence on the properties of it.The article summarizes the features, research status and process of the preparation of catalyst with the hydrothermal method comprehensively and also introduces some innovation and collaboration of hydrothermal method and other techniques. Keywords: catalyst hydrothermal method.
1.引言 催化剂的制备是催化剂研究开发的一个重要方面,是影响催化剂性能的重要因素。相同组成的催化剂如果制备方法不一样,其性能可能会有很大的差别。即使是同一种制备方法,加料顺序的不同也有可能导致催化剂性能很大的不同【1】。因此,研究催化剂的制备方法具有极为重要的意义。目前催化剂的制备方法有浸渍法、沉淀法、溶胶—凝胶法、微乳液法、水热合成方法等,此外还有一些其他的制备方法(混合法、离子交换法、熔融法等)。其中水热法合成A型分子筛,纳米氧化物催化剂,纳米TiO2粉体等十分引人注目,是很有前景的一个发展方向,现在还处在积极探索和发展的阶段,需解决的问题还不少,诸如:催化剂水热过程中各种因素的影响规律,水热过程的机制和动力学研究,有机溶剂介质中的水热研究还不多,水热反应设备的大型化,水热法制备的催化剂活性评价工作还很不够,水热制备技术的放大和工业化报道很少等等【2】。但是,近几年的研究表明,水热法制备催化剂已经慢慢受到关注,尤其是水热法制备高活性和超高活性TiO2已引起研究者的高度重视,估计在未来10-20年间,以上存在的问题将会得到圆满解决,使水热法成为有前景的纳米催化剂合成技术之一。
2.水热法的特点及其反应机理 “水热”一词最早是在研究地壳热液演化时使用的,地质学中用来描述水在温度 和压力共同作用下的自然过程,模拟地层下的水热条件研究某些矿物和岩石的形成原因,系统的水热研究是由华盛顿地球物理实验室进行的,通过对水热催化剂制备及应用技术 2 相平衡研究表征了水热合成理论,在此基础上水热法开始应用于单晶生长和粉体制备【3】。
2.1水热法的基本概念 水热法是在特制的密闭反应容器(高压釜)里,采用水溶液作为反应介质,通过对 反应容器加热,创造一个高温、高压反应环境,使得通常难溶或不溶的物质溶解并且重结晶。按研究对象和目的的不同,水热法可分为水热晶体生长、水热合成、水热反应、水热处理、水热烧结等,分别用来生长各种单晶,制备超细、无团聚或少团聚、结晶完好的陶瓷粉体,完成某些有机反应或对一些危害人类生存环境的有机废弃物质进行处理。及在对较低的温度下完成某些陶瓷材料的烧结等。按设备的差异,水热法又可分为“普通水热法和特殊水热法”,所谓特殊水热法指在水热条件反应体系上再添加其他作用力场,如直流电场、磁场(采用非铁电材料制作的高压釜)、微波场等。其中水热合成是分子筛合成的主要方法,也可用于合成一些晶型氧化物等纳米材料。
2.2水热法的特点 与其他方法相比,水热法具有以下特点【4-8】: (1)反应在相对高的温度和压力下进行,反应速度较快且有可能实现在常规条件下不能进行的反应,水热溶液的黏度较常温常压下的黏度约低1-2个数量级,反应组分的扩散较快,晶体生长界面附近的扩散区更窄,更有利于晶体生长。 (2)改变水热反应环境(PH值、原料配比等)可使产物得到不同的结构和形貌。 (3)水热反应制备的纳米粉体粒度可调。通过控制水热反应条件(前驱物形式、反应温度、反应时间等)可得到不同粒径的产物。 (4)应用水热法可直接得到结晶良好的粉体,无须经过高温焙烧晶化,减少了在焙烧过程中的团聚现象,如硅酸锆采用水热法可在150℃下制得,而其他固相法要1200℃-1400℃下才能得到。 水热合成法要求反应环境压力高,其设备成本高,催化剂产量也受到了限制,目前工业上应用还比较少。
2.3水热合成反应机理探讨 水热法制备催化剂的反应过程中,水解是最基础的反应【9】。首先通过水解从中析出极为微小的结晶中心成为晶核,不同的水解条件(如不同的介质体得到的晶核数量和组成也不尽相同,而晶核的数量与组成却决定了水解沉的组成,及最后所得产品的性质【10】。从微观动力学角度分析,水热方法制得体颗粒的成核机理主要包括生长基元的形成和生长基元之间互相连接形成晶核。在水解反应过程中,反应物分子经历多个简单的反应步骤,最后转化为产物分子。每个简单的反应步骤就是一个反应基元。高价阳离子由于粒子半径很小,在水溶液中很难以简单的粒子形式存在,通常与水分子形成水合络离子单元M(H2O)nz+,随之经历聚合过程【11,12,13】:
水解过程中,水合络离子脱去一个H+,降低了钛的电荷。OH-起到“桥链”的作用,这样水合络离子之间可以连接成二聚体,二聚体可进一步聚合形成多聚长催化剂制备及应用技术 3 链,钛的“羟桥”络合物上的H+继续转移,形成更稳定的“氧桥”。多个链通过“氧桥”作用形成多核络合物,最后凝聚成较大颗粒【14】。
3.水热法制备催化剂的研究现状与进展
3.1水热法合成分子筛 A型分子筛是一种人工合成分子筛,在自然界不存在,其化学组成通式为:Na2O.Al2O3.2SiO2.5H2O,硅铝比为2,有3A、4A及5A分子筛,即孔径分别为0.3nm、0.4nm、0.5nm钾型、钠型及钙型分子筛。A型分子筛广泛用于气体和液体的干燥、吸附分离和净化过程,也用作催化剂及催化剂载体。 水热合成法是分子筛合成的主要方法,该方法也可以用来合成一些纳米氧化物催化剂。在合成的时候,往往要加入一些有机胺类表面活性剂作为模板剂,以定向控制其晶化过程,形成特定几何结构的金属氧化物纳米粒子。若不加入表面活性剂,而通过控制晶化条件,如控制pH值、晶化温度、晶化时间以及前躯体的结构,也可以得到一些纳米粒子。采用该方法目前已经合成出了纳米氧化物 Al2O3、ZnO、Fe2O3 、MnO2和CeO2等【15-18】。 丁士文等【19】以ZnSO4为原料,采用水热法合成纳米ZnO,就反应温度、反应时间、反应物浓度及物料配比等条件对产物的影响进行了探讨,采用该方法制备的Zn0对染料的降解有非常好的催化作用。 近年来随着水热法制备分子筛的研究日益深入,加之环境问题的日益突出,有人研究利用粉煤灰水热法制备分子筛,以低成本的流化床粉煤灰为基本原料,利用封闭式水热合成法,直接与碱液反应,成功合成了分子筛,做到了固体废物的资源化利用。通过水热反应合成分子筛,可以发现,粉煤灰原料不需要高温焙烧,只需要简单处理,既可以反应获得分子筛产品,其具有反应时间较短,反应温度低等特点,体现了其较强的化学活性,降低了合成反应控制的难度,有利于实现工业生产。
3.2高活性二氧化钛光催化剂的水热合成 近年来,将半导体光催化剂应用于消除和降解污染物正成为环境保护领域最为活跃的一个研究方向。在各种半导体催化剂中,二氧化钛因氧化能力强、光诱导超亲水性好、无毒和长期光化学稳定性而在环境净化方面具有重要的应用前景。然而,从实际应用和商业化方面考虑,必须进一步提高和改进二氧化钛光催化剂的活性,主要是提高二氧化钛的结晶度、减小其晶粒尺寸和增大其比表面积。纳米二氧化钛(TiO2)具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能。纳米TiO2是一种重要的无机功能材料,可应用于随角异色涂料、屏蔽紫外线、光电转换、光催化等领域,在光催化领域环境治理方面具有举足轻重的地位,可应用在环保中的各个领域,它在环境污染治理中将日益受到人们的重视,具有广阔的应用前景,因此制备高光催化性能的纳米TiO2,拓展纳米二氧化钛的应用也是学者研究的重点。 水热法合成纳米TiO2粉体具有晶粒发育完整、粒径分布均匀、不需作高温煅烧处理、颗粒团聚程度较轻的特点。并且水热法制备TiO2粉体,避免了湿化学法需经高温热处理可能形成硬团聚的弊端,所合成的TiO2粒子具有结晶度高、缺陷少、一次粒径小、团聚程度小、控制工艺条件可得到所要求晶相和形状的优催化剂制备及应用技术 4 点【20】。其影响因素有:溶液浓度,pH,所用前驱物种类,有无矿化剂及种类,容器的填充度,水热过程中的温度、压力、保温时间等。水热法制备纳米TiO2
的关键问题是设备要经受高温高压,因而对材质和安全性要求较严,而且成本较
高。
3.3水热法制备纳米复合粉体催化剂 纳米复合粉体是催化反应生产纳米材料的常见催化剂,其颗粒大小和分散程度在纳米材料的制备中起到关键作用。 水热法是指在密封的压力容器中,以水或其他液体作为介质(也可以是固相成分之一),在高温高压等条件下制备无机化合物晶体或粉体的一种化学合成方法。水热法提供一个在常压条件下无法得到的特殊的物理学化学环境,使前驱物在反应系统中得到充分的溶解→形成原子或分子生长基元→成核结晶。水热法制备出的纳米晶,晶粒发育完整粒度分布均匀颗粒之间少团聚,可以得到理想的化学计量组成材料,颗粒度可以控制,生产成本低因此水热法非常适用于纳米催化剂的制备,有望成为工业化生产纳米材料的前期工艺水热法适合生长熔点较高,具有包晶反应或非同成分熔化,而在常温下又不溶于各种溶剂或溶解后即分解且不能再结晶的晶体材料。采用水热合成技术已经制备出上百种晶体,和其他的合成方法相比,水热法合成的晶体具有纯度高、缺陷少、热应力小、质量好等特点。水热法制备的粉体具有晶体发育完整、粒径小且分布均匀的性能,可使用便宜的原料。用于制备陶瓷材料时,可省去高温煅烧和球磨。近年来随着科学技术发展对材料品质和性能的要求越来越高,水热合成技术得到广泛采用,水热合成技术已成功地应用于工业化人工水晶的合成陶瓷粉体材料的制备【21,,22】和人工宝石的合成等。晶体生长是一种相变过程,实质是生长基元从周围环境中不断地通过界面而进入晶格的过程。而水热条件下的晶体生长是在密闭很好的高温高压水溶液中进行的,因此反应温度、反应溶液(或溶剂)填充度、浓度和PH值、杂质对前驱物的溶解度和再结晶过程都有较大影响,决定了生成晶体的结构、形貌和生长速度。目前已经有人采用水热法重结晶制备SiO2负载型纳米复合粉体催化剂,这是对纳米材料可推广应用的制备方法的一个新的探索。 在结构粉体的制备过程中,目前大多采用水热技术作为核心研究工具。但目前国内外在高温高压水溶液方面大多仍停留于“黑箱操作”阶段,仅对原料和产物进行各种性能的表征和分析,受认识水平及测试技术的限制,对反应过程开展的基础研究不多,既制约了工艺的优化进程,又限制了相关理论的发展。在此基本尚处于空白的领域里深入开展一些工作将很有意义。可在高温高压原位检测技术、溶液理论方面开展一些具有创新性的工作.研究高温高压水溶液的一些基本特征(如溶液结构、组分变化模式、渗透能力等),为水热技术的应用提供一个基础数值平台。同时拓展研究深度,使研究内容更具创新特色,并突出过程放大特征,使纳米粉体结构更新颖、性能更独特、产业辐射力更强。可以预见,随着水热过程机理的完善和控制技术的进步,水热技术的基本理论和应用开发将得到更大的发展,成为制备纳米粉体材料的重要手段。