当前位置:文档之家› OSPF协议基本命令的配置

OSPF协议基本命令的配置

实验报告15

OSPF协议详解分析

OSPF 学习笔记 OSPF 协议号是89,也就是说在ip 包的protocol 中是89,用ip 包来传送 数据包格式: 在OSPF 路由协议的数据包中,其数据包头长为24 个字节,包含如下8 个字段: * Version number-定义所采用的OSPF 路由协议的版本。 * Type-定义OSPF 数据包类型。OSPF 数据包共有五种: * Hello-用于建立和维护相邻的两个OSPF 路由器的关系,该数据包是周期性地发送的。 * Database Description-用于描述整个数据库,该数据包仅在OSPF 初始化时发送。 * Link state request-用于向相邻的OSPF 路由器请求部分或全部的数据,这种数据包是在当 路由器发现其数据已经过期时才发送的。 * Link state update-这是对link state 请求数据包的响应,即通常所说的LSA 数据包。 * Link state acknowledgment-是对LSA 数据包的响应。 * Packet length-定义整个数据包的长度。 * Router ID-用于描述数据包的源地址,以IP 地址来表示,32bit * Area ID-用于区分OSPF 数据包属于的区域号,所有的OSPF 数据包都属于一个特定 的OSPF 区域。 * Checksum-校验位,用于标记数据包在传递时有无误码。 * Authentication type-定义OSPF 验证类型。 * Authentication-包含OSPF 验证信息,长为8 个字节。 FDDI 或快速以太网的Cost 为1,2M 串行链路的Cost 为48,10M 以太网的Cost 为10 等。 所有路由器会通过一种被称为刷新(Flooding)的方法来交换链路状态数据。Flooding 是指路由器将其LSA 数据包传送给所有与其相邻的OSPF 路由器,相邻路由器根据其接收到的链路状态信息 更新自己的数据库,并将该链路状态信息转送给与其相邻的路由器,直至稳定的一个过程。当路由 器有了一个完整的链路状态数据库时,它就准备好要创建它的路由表以便能够转发数据流。CISCO 路由器上缺省的开销度量是基于网络介质的带宽。要计算到达目的地的最低开销,链路状态型路由选择协议(比如OSPF)采用Dijkstra 算法,OSPF 路由表中最多保存 6 条等开销路由条目以进行负 载均衡,可以通过"maximum-paths" 进行配置。如果链路上出现fapping 翻转,就会使路由器不停 的计算一个新的路由表,就可能导致路由器不能收敛。路由器要重新计算客观存它的路由表之前先 等一段落时间,缺省值为 5 秒。在CISCO 配置命令中"timers spf spf-delay spy-holdtime" 可以对两次连续SPF 计算之间的最短时间(缺省值10 秒)进配置。 路由器初始化时Hello 包是用224.0.0.5 广播给域内所有OSPF 路由器,选出DR 后在用224.0.0.6 和DR,BDR 建立邻接。DR 用224.0.0.5 广播给DRother LSA BDR 也是 DRother 用224.0.0.6 广播LSA 给DR 和BDR DR 是在一个以太网段内选举出来的,如果一个路由器有多个以太网段那么将会有多个 DR 选举;DR 的选择是通过OSPF 的Hello 数据包来完成的,在OSPF 路由协议初始化的过程中,会通过Hello 数据包在一个广播性网段上选出一个ID 最大的路由器作为指定

双机热备OSPF组网配置指导手册v1.3

双机热备主备方式OSPF组网配置 指导手册

关键字:双机热备、主备、非抢占、物理接口、静态路由、OSPF 目录 1双机热备防火墙组网说明: (3) 2主防火墙配置步骤: (4) 2.1 配置接口地址 (6) 2.2 配置安全区域 (8) 2.3 配置双机热备 (9) 2.4 配置接口联动 (12) 2.5 配置NAT (12) 2.6 配置OSPF动态路由协议 (16) 2.7 配置NQA (19) 2.8 配置静态缺省路由与TRACK 1绑定 (20) 2.9 配置OSPF发布缺省路由 (21) 3备防火墙配置步骤: (22) 2.1 配置接口地址 (23) 2.2 配置安全区域 (25) 2.3 配置双机热备 (27) 2.4 配置接口联动 (29) 2.5 配置NAT (30) 2.6 配置OSPF动态路由协议 (34) 2.7 配置NQA (36) 2.8 配置静态缺省路由与TRACK 1绑定 (37) 2.9 配置OSPF发布缺省路由 (38)

1 双机热备防火墙组网说明: 组网说明: 防火墙双机热备组网,主备非抢占模式,防火墙上行链路通过静态路由指向连接INTERNET网络,防火墙下行链路通过OSPF动态路由指向内部网络路由器。 业务要求: 当网络“层三交换机”或“防火墙”或“层二交换机”某一个设备本身故障或某一条线路故障时,流量可以及时从主防火墙切换至备防火墙,保证网络应用业务不中断、平稳运行。

2 主防火墙配置步骤: 1 配置PC IP地址192.168.0.3/24,连接管理防火墙: 2 通过IE浏览器打开防火墙WEB管理界面,防火墙默认的管理IP地址192.168.0.1,默认的用户名:h3c,默认密码:h3c。

华为OSPF配置命令详解

华为OSPF配置命令详解 网络技术2009-07-11 15:22:36 阅读946 评论0 字号:大中小订阅【命令】ospf network-type { broadcast | nbma | p2mp | p2p } undo ospf network-type { broadcast | nbma | p2mp | p2p } 【视图】接口视图 【参数】broadcast:设置接口网络类型为广播类型。 nbma:设置接口网络类型为NBMA 类型。 p2mp:设置接口网络类型为点到多点。 p2p:设置接口网络类型为点到点。 【描述】ospf network-type 命令用来设置OSPF 接口网络类型, undo ospf network-type 命令用来删除接口指定的网络类型。需要注意的是:当接口被配置为新的网络类型后,原接口网络类型将自动取消。 【举例】# 配置接口Serial0 为NBMA 类型。 [Quidway-Serial0] ospf network-type nbma 【命令】ospf peer ip-address [ eligible ] undo ospf peer ip-address 【视图】接口视图 【参数】ip-address:NBMA、点到点和点到多点接口的相邻路由器的IP 地址。eligible:表明该邻居具有选举权。

【描述】ospf peer 命令用来设定对端路由器IP 地址。undo ospf peer 命令用来取 消对端路由器IP 地址的设定。 缺省情况下,不设定任何对端路由器IP 地址。 对于NBMA 网络,如X.25 或帧中继等不支持广播方式的网络上,还需要进行一些特殊的配置。由于无法通过广播Hello 报文的形式发现相邻路由器,必须手工为该接口指定相邻路由器的IP 地址,以及该相邻路由器是否有选举权等,若未指定eligible 关键字时,就认为该相邻 路由器没有选举权。 【举例】# 配置接口Serial0 的相邻路由器IP 地址为10.1.1.4。 [Quidway-Serial0] ospf peer 10.1.1.4 【命令】ospf timer dead seconds undo ospf timer dead 【视图】接口视图 【参数】seconds:邻居路由器的失效时间,取值范围为1~65535 秒。其缺省值根据 接口类型不同而不同。 【描述】ospf timer dead 命令用来配置对端路由器的失效时间。 undo ospf timer dead 命令用来恢复对端路由器失效时间为缺省值。

ospf协议,实验报告

ospf协议,实验报告 篇一:实验7 OSPF路由协议配置实验报告 浙江万里学院实验报告 课程名称:数据通信与计算机网络及实践 实验名称: OSPF路由协议配置专业班级:姓名:小组学号:XX014048 实验日期: 再测试。要求写出两台路由器上的ospf路由配置命令。 第页共页 [RTC-rip-1]import ospf [RTC-rip-1]quit [RTC]ospf [RTC-ospf-1]import rip [RTC-ospf-1]quit 结合第五步得到的路由表分析出现表中结果的原因: RouteB 通过RIP学习到C和D 的路由情况,通过OSPF 学习到A 的路由信息 实验个人总结 班级通信123班本人学号后三位__048__ 本人姓名_徐波_ 日期 本次实验是我们的最后一次实验,再次之前我们已经做了很多的有关于华为的实验,从一开始的一头雾水到现在的有一些思路,不管碰到什么问题,都能够利用自己所学的知识去解决或者有一些办法。这些华为实验都让我受益匪浅。

实验个人总结 班级通信123班本人学号后三位__046__ 本人姓名_金振宁_ 日期 这两次实验都可以利用软件在寝室或者去其他的地方去做,并不拘泥于实验室,好好的利用华为的模拟机软件对我们来说都是非常有用的。 实验个人总结 班级通信123班本人学号后三位本人姓名_陈哲日期 第页共页 篇二:单区域的OSPF协议配置实验报告 学生实验报告 *********学院 篇三:OSPF实验报告 计算机学院 实验报告 ( XX 年春季学期) 课程名称:局域网设计与管理 主讲教师:李辉 指导教师:学生姓名: 学 年郑思楠号: XX012019 级: XX级

基本OSPF配置

基本OSPF配置 实验一: (一)实验名称:OSPF多区域配置 (二)实验目的:1)理解路由器的基本功能 2)训练路由器动态路由的基本配置命令 3)掌握路由器路由配置的基本方法 4)掌握在路由器上配置OFPF动态路由的基本方法 5)掌握网络连通性的基本方法 (三)实验拓扑图: (四)实验步骤: (一)配置PC机、路由器、服务器的IP地址 路由器router0:Router>enable Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)#interface FastEthernet0/0

Router(config-if)#ip address 10.0.1.254 255.255.255.0 Router(config-if)#no shutdown Router(config-if)# %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up Router(config-if)#exit Router(config)#interface FastEthernet0/1 Router(config-if)#ip address 10.0.2.254 255.255.255.0 Router(config-if)#no shutdown Router(config-if)#exit Router(config)#interface Serial1/0 Router(config-if)#clock rate 64000 Router(config-if)#ip address 30.0.0.1 255.255.255.0 Router(config-if)#no shutdown 路由器router1:Router>enable Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)#interface FastEthernet0/0 Router(config-if)#ip address 20.0.0.254 255.255.255.0 Router(config-if)#no shutdown Router(config-if)#exit Router(config)#interface Serial1/1 Router(config-if)#clock rate 64000 This command applies only to DCE interfaces Router(config-if)#ip address 30.0.0.2 255.255.255.0 Router(config-if)#no shutdown Router(config)#interface Serial1/0 Router(config-if)#clock rate 64000 Router(config-if)#ip address 40.0.0.1 255.255.255.0 Router(config-if)#no shutdown 路由器router2:outer>enable Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z.

OSPF协议配置

OSPF 协议配置 【实验目的】 1.了解和掌握ospf 的原理; 2.熟悉ospf 的配置步骤; 3.懂得如何配置OSPF router ID ,了解DR/BDR 选举过程; 4.掌握hello-interval 的使用; 5.学会使用OSPF 的authentication ; 【实验拓扑】 【实验器材】 如上图,需用到路由器三台,hub/switch 一个,串行线、网线若干,主机三台。 说明:拓扑中网云可用hub 或普通switch 替代,建立multiaccess 网络,以太口连接。 【实验原理】 一、OSPF 1. OSPF 基本原理以及邻居关系建立过程 OSPF 是一种链路状态型路由选择协议。它依靠5种(Hello, DBD, LSR, LSU and LSAck)不同种类的数据包来识别、建立和维护邻居关系。当路由器接收到来自邻居的链路状态信息后,会建立一个链路状态数据库;然后根据该链路状态数据库,采用SPF 算法确定到各目的地的最佳路径;最后将最佳路径放到它的路由表中,生成路由表。 OSPF 会进行周期性的更新以维护网络拓扑状态,在LSA 的生存期到期时进行周期性的更新。除了周期性更新之外,还有触发性更新。即当网络结构发生变化(例如增减路由器、链路状态发生变化等)时,会产生触发性更新,把变化的那一部分通告给整个网络。 192.168.1.0/24 RT A

2.Designated Router (DR) / Backup Designated Router(BDR)选举过程 存在于multiaccess网络,点对点链路和NBMA网络中无此选举过程,此过程发生在Two-Way之后ExStart之前。 选举过程: 选举时,依次比较hello包中的各台router priority和router ID,根据这两个值选出DR 和BDR。选举结束后,只有DR/BDR失效才会引起新的选举过程;如果DR故障,则BDR 替补上去,次高优先级Router被选为BDR。 基本原则如下: 1)有最高优先级值的路由器成为DR,有第二高优先级的路由器成为BDR; 2)优先级为0的路由器不能作为DR或BDR,只能做DRother (非DR); 3)如果一台优先级更高的路由器加到了网络中,原来的DR与BDR保持不变,只有DR 或BDR它们失效时才会改变; 4)当优先级相同时,路由器ID最高和次高的的就成为DR和BDR; 5)当没有配置loopback时,用router上up起来的端口中最高IP地址作为Router ID,否则就用loopback口的IP地址作为它的ID;如果有多个loopback则用loopback端口中最高IP地址作为ID;而且路由器ID 一旦确定就不再更改。 建议使用优先级操纵DR/BDR选举过程 3.update timer与authentication的影响 要让OSPF路由器能相互交换信息,它们必须具有相同的hello间隔和相同的dead-time 间隔。缺省情况下,后者是前者的4倍。 缺省地,路由器认为进入的路由信息总是可靠的、准确的,从而不加甄别就进行处理,这存在一定的危险。因此,为了确保进入的路由信息的可靠性和准确性,我们可以在路由器接口上配置认证密钥来作为同一区域OSPF路由器之间的口令,或对路由信息采用MD5算法附带摘要信息来保证路由信息的可靠性和准确性。建议采用后者,因为前者的密钥是明文发送的。 三、其它预备知识 1、回环接口的配置: Router(config)#int l0 Router(config-if)#ip addr *.*.*.* *.*.*.* 2、telnet:是属于应用层的远程登陆协议,是一个用于远程连接服务的标准协议,用户可以 用它建立起到远程终端的连接,连接到Telnet服务器;用户也可以用它远程连接上路由器进行路由器配置。 【实验内容】 一、在路由器上配置单域的OSPF 1.按照拓扑图1接好线,完成如下基本配置: (1)配置端口IP地址 以RTA路由器的配置为例: RTA(config)#Interface Ethernet 0 RTA(config-if)#ip address 192.168.1.1 255.255.255.0

华为路由OSPF理论和配置命令

OSPF要求每台运行OSPF的路由器都了解整个网络的链路状态信息,这样才能计算出到达目的地的最优路径。OSPF的收敛过程由链路状态公告LSA(Link State Advertisement)泛洪开始,LSA中包含了路由器已知的接口IP地址、掩码、开销和网络类型等信息。收到LSA的路由器都可以根据LSA提供的信息建立自己的链路状态数据库LSDB(Link State Database),并在LSDB的基础上使用SPF算法进行运算,建立起到达每个网络的最短路径树。最后,通过最短路径树得出到达目的网络的最优路由,并将其加入到IP路由表中。 OSPF直接运行在IP协议之上,使用IP协议号89。 OSPF有五种报文类型,每种报文都使用相同的OSPF报文头。 Hello报文:最常用的一种报文,用于发现、维护邻居关系。并在广播和NBMA(None-Broadcast Multi-Access)类型的网络中选举指定路由器DR(Designated Router)和备份指定路由器BDR

(Backup Designated Router)。 DD报文:两台路由器进行LSDB数据库同步时,用DD报文来描述自己的LSDB。DD报文的内容包括LSDB中每一条LSA的头部(LSA的头部可以唯一标识一条LSA)。LSA头部只占一条LSA的整个数据量的一小部分,所以,这样就可以减少路由器之间的协议报文流量。LSR报文:两台路由器互相交换过DD报文之后,知道对端的路由器有哪些LSA是本地LSDB 所缺少的,这时需要发送LSR报文向对方请求缺少的LSA,LSR只包含了所需要的LSA的摘要信息。 LSU报文:用来向对端路由器发送所需要的LSA。 LSACK报文:用来对接收到的LSU报文进行确认。 邻居和邻接关系建立的过程如下: Down:这是邻居的初始状态,表示没有从邻居收到任何信息。 Attempt:此状态只在NBMA网络上存在,表示没有收到邻居的任何信息,但是已经周期性的向邻居发送报文,发送间隔为HelloInterval。如果RouterDeadInterval间隔内未收到邻居的Hello报文,则转为Down状态。 Init:在此状态下,路由器已经从邻居收到了Hello报文,但是自己不在所收到的Hello报文的邻居列表中,尚未与邻居建立双向通信关系。 2-Way:在此状态下,双向通信已经建立,但是没有与邻居建立邻接关系。这是建立邻接关系以前的最高级状态。 ExStart:这是形成邻接关系的第一个步骤,邻居状态变成此状态以后,路由器开始向邻居发送DD报文。主从关系是在此状态下形成的,初始DD序列号也是在此状态下决定的。在此状态下发送的DD报文不包含链路状态描述。 Exchange:此状态下路由器相互发送包含链路状态信息摘要的DD报文,描述本地LSDB的

OSPF协议的配置

OSPF协议的配置 1.配置ospf的stub区域 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】stub [no-summary]配置当前区域为STUB区域 Stub命令只有当在ABR上配置时,可选参数no-summary 才能对该区域起作用(所有连接到stub区域的路由器必须使用stub命令将该区域配置成stub区域 2.配置ospf的Nssa区域 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】nssa [default-route-advertise|no-import-route|no-summary] 配置一个区域为NSSA区域,所有连接到NSSA区域的路由器使用NSSA命令将 该区域配置为NSSA属性 3.配置ospf的虚连接 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】vlink-peer router-id连接到对方的router-id 4.配置ospf的网络类型 介绍:OSPF根据类型分为四种,由于NBMA网络必须是全连接通的,所有网络中任意两台路由器之间都必须可达,很多情况下,这个要求无法满足,这时需要修改网络类型,如果部分路由器之间没有直接可达的链路时,应将接口配置成P2MP方式,如果路由器在NBMA 网络中只有一个对端,可以将接口类型改为P2P方式 【 quidway】interface interface-type interface-number 【 quidway】ospf network-type {broadcast|nbma|p2mp|p2p}配置ospf接口的网络类型5.配置ospf的路由聚合 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】abr(asbr)-summary ip-address mask配置abr和asbr的路由聚合 6.配置过滤ospf接收的路由 【Quidway】ospf 【Quidway】area area-id 【Quidway】filter-policy acl-number import(基于ACL过滤学到的路由信息) 【Quidway】filter-policy gateway ip-prefix-name import(基于目的地址前缀过滤邻居发布路由信息) 7.配置ospf引入缺省路由 【Quidway】ospf 【Quidway】default-route-advertise[always][cost cost][type type][route- Policy route-policy-name]使用这个命令配置always参数时,可以强制OSPF引入一条缺省路由,否则必须本地有缺省路由才可以 引入。 8.配置ospf的区域认证 【Quidway】ospf 【Quidway】area area-id

思科OSPF实验1:基本的OSPF配置

思科OSPF实验1:基本的OSPF配置 实验步骤: 1.首先在3台路由器上配置物理接口,并且使用ping命令确保物理链路的畅通。 2.在路由器上配置loopback接口: R1(config)#int loopback 0 R1(config-if)#ip add 1.1.1.1 255.255.255.0 R2(config)#int loopback 0 R2(config-if)#ip add 2.2.2.2 255.255.255.0 R3(config)#int loopback 0 R3(config-if)#ip add 3.3.3.3 255.255.255.0 路由器的RID是路由器接口的最高的IP地址,当有环回口存在是,路由器将使用环回口的最高IP地址作为起RID,从而保证RID的稳定。 3.在3台路由器上分别启动ospf进程,并且宣告直连接口的网络。 R1(config)#router ospf 10 R1(config-router)#network 192.168.1.0 0.0.0.255area 0 R1(config-router)#network 1.1.1.0 0.0.0.255 area 0 R1(config-router)#network 192.168.3.0.0.0.255 area 0

ospf的进程号只有本地意义,既在不同路由器上的进程号可以不相同。但是为了日后维护的方便,一般启用相同的进程号。 ospf使用反向掩码。Area 0表示骨干区域,在设计ospf网络时,所有的非骨干区域都需要和骨干区域直连! R2,R3的配置和R1类似,这里省略。不同的是我们在R2和R3上不宣告各自的环回口。 *Aug 13 17:58:51.411: %OSPF-5-ADJCHG: Process 10, Nbr 2.2.2.2 on Serial1/0 from LOADING to FULL, Loading Done 配置结束后,我们可以看到邻居关系已经到达FULL状态。 4. 在R1上查看路由表,可以看到以下信息: R1#show ip route Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is not set 1.0.0.0/24 is subnetted, 1 subnets

OSPF协议配置的主要命令

OSPF 开放式最短路径优先算法Open Shortest Path First (OSPF将时间和距离的资源最优化,这种最优化的结果就是速度的最优化,每个时间片和时系分隔中总有空隙的路径资源存在,使得空隙路径资源被最大化的利用,如果能够将此算法用于“智能交通管理”中,那将是一大突破) (参见:OSPF 开放式最短路径优先算法Open Shortest Path First) 1.router ospf 启动OSPF路由协议进程并进入OSPF配置模式。若进程已经启动,则该命令的作用就是进入OSPF配置模式。其中Process ID(PID)是OSPF的进程号,它的范围是1~65535,ID 可以在指定的范围内随意设置,它只对本地路由器内部有意义,不同的路由器PID可以相同,也可以不同。 Router-test(config)#router ospf 10 //路由器启动ospf进程,进程号为10 2.network address wildmask area area-id Network ip<子网号><子网掩码的反码>area<区域号> 配置OSPF运行的接口并指定这些接口所在的区域ID。 OSPF路由协议进程将对每一个network配置,搜索落入address wildmask范围(可以是无类别的网段)的接口,然后将这些接口信息放入OSPF链路状态信息数据库相应的area-id中。 (OSPF的SPF 要覆盖全网络的路径,所以使用wildmask,而RIP的V_D只是一个很小的局部范围,因此不能使用wildmask 进行覆盖,其中子网掩码的反码的计算方法为,将子网掩码表示成2进制,然后各位取反,再转换成10进制即可。如:子网掩码:255.0.0.0的反码为0.255.255.255) OSPF协议交互的是链路状态信息而不是具体路由信息。OSPF路由是对链路状态信息数据库调用SPF算法(参见:SPF算法)计算出来的。 area-id为0的区域为主干区,一个OSPF域内只能有一个主干区。其他区域维护各自的链路状态信息数据库,非0区域之间的链路状态信息交互必须经过主干区。 同时位于两个区域的路由器称为区域边界路由器,即ABR。ABR是非0区域的路由出口,在ABR上一般有一个非0区域和一个主干区域的链路状态信息数据库,两个数据库之间交互区域间的链路状态信息。 Router-test(config)#router ospf 10 //路由器启动ospf进程,进程号为10 Router-test(config-router)#network 192.168.1.0 0.0.0.255 area 0 //将192.168.1.0定义为参与OSPF的网络,OSPF覆盖全网设备,设置OSPF主区域号为0 Router-test(config-router)#exit //从OSPF协议配置模式退到全局配置模式 Router-test(config)#exit //从全局配置模式退到特权用户模式

OSPF单区域配置

OSPF单区域配置 【学习日标】 掌挥OSPF中Router ID 的配置方法 掌握OSPF的配置力法 掌握通过display命令查看OSPP运行状态的方法 掌握使用OSPF发布缺省路由的方法 掌握修改OSPF hello 和dead 时间的配置方法 学握OSPF 路由优先级的修改力法 【理论知识】 OSPF是由IFIF 开发的基J链路状念的自治系统内部路由协议,用来代替RIP 路由协议自身的算法限。与距离矢量协议不同,链路状态路由协议使用Dijkstra 的最短路径优先算法计算和选择路由。OSPF 协议在有组播发送能力的链路层上以组播地址发送协议包,即达到了节约资源的目的,有最大限度地减少了对其他网络设备的干扰。 【实验拓扑】 步骤1.按照实验拓扑图规划IP 地址 步骤2.配置OSPF 路由协议 步骤3.在OSPP中下发默认路由 步骤4.查看R1的路由表、OSPP 邻居状态和链路状态数据库

步骤5.在R2上修改OSPF HELO和DEAD时间的配置方法并查看OSPF的邻居状态步骤6.修改OSPF 优先级控制DR BDR 的选举 【操作步骤】 步骤1.按照实验拓扑图规划IP地址查看接口ip地址配置 [Huawei] sysname R1 [RI]int loo 0 [R1-LoopBack0] ip add 1.1.1.132 [R1-LoopBack0] int g0/0/0 [Rl-GigabitEthernet0/0/01ip add 12.1.1.124 [Huawei] sys R2 [R2] int g0/0/0 [R2-Gigabi tEthernet0/0/0] ip add 12.1.1.2 255.255.255.0 [R2-Gigabi tEthernet0/0/0] int loo 0 [R2-LoopBack0] ip add 2.2.2.2 32 [R2-LoopBack0] int g0/0/1 [R2-GigabitEthernet0/0/1] ip add 23.1.1.2 24 [Huawei] sys R3 [R3]int loo 0 [R3-LoopBack0] ip add 3.3.3.3 32 [R3-LoopBack0] int g0/0/1 [R3-GitEthernet0/0/1] ip add 23.1.1.3 24 使用命令display ip interface birf查看接口ip地址配

OSPF协议配置实例

OSPF 协议配置 【实验目的】 1.了解和掌握ospf 的原理; 2.熟悉ospf 的配置步骤; 3.懂得如何配置OSPF router ID ,了解DR/BDR 选举过程; 4.掌握hello-interval 的使用; 5.学会使用OSPF 的authentication ; 【实验拓扑】 【实验器材】 如上图,需用到路由器三台,hub/switch 一个,串行线、网线若干,主机三台。 说明:拓扑中网云可用hub 或普通switch 替代,建立multiaccess 网络,以太口连接。 【实验原理】 一、OSPF 192.168.1.0/RTA

1. OSPF基本原理以及邻居关系建立过程 OSPF是一种链路状态型路由选择协议。它依靠5种(Hello, DBD, LSR, LSU and LSAck)不同种类的数据包来识别、建立和维护邻居关系。当路由器接收到来自邻居的链路状态信息后,会建立一个链路状态数据库;然后根据该链路状态数据库,采用SPF算法确定到各目的地的最佳路径;最后将最佳路径放到它的路由表中,生成路由表。 OSPF会进行周期性的更新以维护网络拓扑状态,在LSA的生存期到期时进行周期性的更新。除了周期性更新之外,还有触发性更新。即当网络结构发生变化(例如增减路由器、链路状态发生变化等)时,会产生触发性更新,把变化的那一部分通告给整个网络。 2.Designated Router (DR) / Backup Designated Router(BDR)选举过程 存在于multiaccess网络,点对点链路和NBMA网络中无此选举过程,此过程发生在Two-Way之后ExStart之前。 选举过程: 选举时,依次比较hello包中的各台router priority和router ID,根据这两个值选出DR和BDR。选举结束后,只有DR/BDR失效才会引起新的选举过程;如果DR故障,则BDR替补上去,次高优先级Router被选为BDR。 基本原则如下: 1)有最高优先级值的路由器成为DR,有第二高优先级的路由器成为BDR; 2)优先级为0的路由器不能作为DR或BDR,只能做DRother (非DR); 3)如果一台优先级更高的路由器加到了网络中,原来的DR与BDR保持不变,只有DR或BDR它们失效时才会改变; 4)当优先级相同时,路由器ID最高和次高的的就成为DR和BDR; 5)当没有配置loopback时,用router上up起来的端口中最高IP地址作为Router ID,否则就用loopback口的IP地址作为它的ID;如果有多个loopback则用loopback端口中最高IP地址作为ID;而且路由器ID 一旦确定就不再更改。 建议使用优先级操纵DR/BDR选举过程 3.update timer与authentication的影响 要让OSPF路由器能相互交换信息,它们必须具有相同的hello间隔和相同的dead-time

OSPF协议基本配置

OSPF协议基本配置 注意:此实验拓扑图是以机房的实验拓扑画的,如果是使用模拟器来做此实验,请根据模拟器的拓扑来更改。 实验目的: 1.能够独立的配置OSPF的单区域,实现整个区域之间的网络通信。 2.能够使用各种SHOW命令进行检查。 3.理解DR/BDR的选举原则,OSPF的邻接关系的建立过程。 4.邻接关系建立的必须匹配的几个参数 5.3张表的形成过程,OSPF协议的基本原理 实验要求: 1.按照拓扑图把基本的链路连接配置起来,并且配置完成以后检查基本的链路通信(检查直连链路之间能否进行通信) 2.运行OSPF协议,实现整个网络之间可达。(配置OSPF单区域) 3.保证R1成为DR,其他的路由器成为DROTHER 实验配置:(基本的常见配置和链路配置这里不给出) R1上的配置: R1(config)#int loopback 0 R1(config-if)#ip address 11.11.11.11 255.255.255.0 //回环接口,一般回环接口我们主要用来做测试或者模拟网段的时候使用,需要注意回环接口是一个逻辑上的接口。没有真实的物理接口和他对应,但是回环接口基本上具有所有物理借口的特性 R1(config-if)#

R1(config)#router ospf 1 //运行OSPF协议,进程ID为1。进程ID只是为了识别路由器本地运行了几个OSPF进程。 R1(config-router)#router-id 1.1.1.1 //指定R1的router-id为1.1.1.1 R1(config-router)#network 12.12.12.0 0.0.0.255 area 0 //将属于12.12.12.0/24这个网段的所有接口公告到区域0里去。 R1(config-router)#network 172.16.1.0 0.0.0.255 area 0 R1(config-router)# R2上的配置: R2(config)#router ospf 1 R2(config-router)#router-id 2.2.2.2 R2(config-router)#network 12.12.12.0 0.0.0.255 area 0 R2(config-router)#network 13.13.13.0 0.0.0.255 area 0 R2(config-router)#network 172.16.1.0 0.0.0.255 area 0 R2(config-router)# R3上的配置: R3(config)#interface loopback 0 R3(config-if)#ip address 33.33.33.33 255.255.255.0 R3(config)#router ospf 1 R3(config-router)#router-id 3.3.3.3 R3(config-router)#network 13.13.13.0 0.0.0.255 area 0 R3(config-router)#network 172.16.1.0 0.0.0.255 area 0 R3(config-router)#network 33.33.33.0 0.0.0.255 area 0 当完成上述配置以后我们可以发现已经可以实现整个网络之间的相互通信了。 当做完以后使用各种SHOW命令进行检查。 R1#sh ip ospf neighbor//查看OSPF的邻接关系表,需要注意这里所看到的都是邻居的信息。 Neighbor ID Pri State Dead Time Address Interface 2.2.2.2 1 FULL/BDR 00:00:29 172.16.1.2 Ethernet0 3.3.3.3 1 FULL/DROTHER 00:00:37 172.16.1.3 Ethernet0 2.2.2.2 0 FULL/ - 00:00:30 12.12.12.2 Serial0 R1#

【H3C技术】OSPF配置命令全解析.pdf

一.基本信息配置 system-view //进入系统视图 [H3C]sysname RT3 //为设备命名 [RT3]super password simple H3C //设置超级密码 [RT3]local-user admin //添加用户 [RT3-luser-admin]password simple admin //为用户设定密码[RT3-luser-admin]service-type telnet //指定用户的类型[RT3-luser-admin]quit //返回上一级 [RT3]user-interface vty 0 4 //进入vty [RT3-ui-vty0-4]set authentication password simple telnet //设置远程登陆认证,密码为telnet [RT3-ui-vty0-4]idle-timeout 5 0 //配置超时退出时间 其它略 二、链路配置及调测 interface Serial0/2/0 ip address 10.1.13.2 255.255.255.252 undo shutdown interface LoopBack0 ip address 3.3.3.3 255.255.255.255 undo shutdown

interface Ethernet0/1/0 ip address 10.1.3.1 255.255.255.0 undo shutdown 其它略 三、OSPF多区域及RIP配置 [RT3] ospf 1 router-id 3.3.3.3 //配置OSPF ROUTER-ID silent-interface all //配置所有端口为被动接口 undo silent-interface Serial0/2/0 //关闭此接口的被动接口undo silent-interface Serial0/2/2 area 1 //OSPF区域,可以写成点分十进制0.0.0.1 network 3.3.3.3 0.0.0.0 //宣告OSPF的网段 network 10.1.13.0 0.0.0.3 network 10.1.3.0 0.0.0.255 [RT1] ospf 1 router-id 1.1.1.1 silent-interface all undo silent-interface Serial0/2/0 undo silent-interface Serial0/2/2 area 0 network 10.0.15.0 0.0.0.3 network 1.1.1.1 0.0.0.0 area 1 network 10.1.13.0 0.0.0.3 network 10.1.1.0 0.0.0.255 [RT5] ospf 1 router-id 5.5.5.5 silent-interface all undo silent-interface Serial0/2/0 undo silent-interface Serial0/2/2 area 0 network 10.0.15.0 0.0.0.3 network 5.5.5.5 0.0.0.0 network 10.0.5.0 0.0.0.255 network 10.0.56.0 0.0.0.3 [RT6] ospf 1 router-id 6.6.6.6 silent-interface all undo silent-interface Serial0/2/0 undo silent-interface Serial0/2/2 area 0 network 10.0.56.0 0.0.0.3 network 6.6.6.6 0.0.0.0 area 2

相关主题