当前位置:文档之家› 氮化硅薄膜材料的PECVD制备及其光学性质研究

氮化硅薄膜材料的PECVD制备及其光学性质研究

目 录 1 引言-------------------------------------------------------------------------------------------------------------------错

误!未定义书签。 1.1氮化硅的特性-----------------------------------------------------------1 1.2氮化硅的制备方法----------------------------------------------------------------------------------------2

1.2.1常压化学气相沉积(APCVD)--------------------------------------------------------------------2

1.2.2低压化学气相沉积(LPCVD)--------------------------------------------------------------------2

1.2.3等离子体增强化学气相沉积(PECVD)------------------------------------------------------3

1.3氮化硅薄膜PECVD制备的特点-----------------------------------------------------------------------4

2 实验-------------------------------------------------------------------------------------------------------------------4

2.1实验仪器的介绍-------------------------------------------------------------------------------------------4

2.2 PECVD法制备氮化硅薄膜的原理----------------------------------------5

2.3实验方法------------------------------------------------------------5

3 实验结果与讨论-------------------------------------------------------------------------------------------------5 参考文献--------------------------------------------------------------------------------------------------------------10 物理与电子信息学院毕业论文

1 氮化硅薄膜材料的PECVD制备及其光学性质研究

摘要:等离子增强型化学气相沉积(Plasma Enhanced Chemical Vapor Deposition , PECVD)是目前较为理想和重要的氮化硅薄膜制备方法,本文详细探讨了对氮化硅薄膜PECVD制备的方法、原理以及制备过程,成功生长了质量较好的氮化硅薄膜,并用紫外-可见光光谱仪研究了沉积薄膜的表面形貌及其光学带隙,得出氮化硅薄膜相关的光学特性,结果表明,氮气流量对薄膜的光学带隙影响较大,制备的薄膜主要为富硅氮化硅薄膜。 关键词:PECVD;氮化硅薄膜;光学性质

1引言 1.1氮化硅的特性 氮化硅是一种性能优良的功能性材料,它具有非常良好的介特性(介电常数低、损耗低)、高绝缘性、漏电低、抗氧化等优良的物理性能。高致密性的氮化硅,对杂质离子有很好的阻挡能力,因此,氮化硅被作为一种高效的器件表面钝化层,而被广泛地应用于半导体器件工艺中, 如MOSFET、HBT、HEMT。在集成电路中,氮化硅还被应用于层间绝缘、介质电容以及耐磨抗蚀涂层等。同时氮化硅薄膜的优良的机械性能和良好的稳定性,在新兴的微机械加工工艺中也被越来越广泛的应用。 氮化硅在太阳能光伏领域也是一种重要的材料。人们发现 , 在太阳能电池表面生长高质量氮化硅薄膜不仅可以十分显著地提高太阳能电池的转换效率 , 而且还可以降低生产成本。这是因为作为一种减反射膜 , 氮化硅不仅有着极好的光学性能(λ= 632.8nm 时折射率在1.8~2.5 之间 , 而最理想的封装太阳能电池减反射膜折射率在 2.1~2.25之间)和化学性能 , 还能对质量较差的硅片起到表面和体内钝化作用 , 提高电池的短路电流。因此 ,采用氮化硅薄膜作为太阳能电池的减反射膜已经成为光伏界的研究热点[1~3]。 近年来随着第三代薄膜太阳能电池的发展,澳大利亚西南威尔士大学的Marting 物理与电子信息学院毕业论文 2 Green教授于2001年提出了新一代电池具有全新的概念,采用清洁绿色环保的制造技术,达到电池的高效率与新技术、新概念、新材料并举。一种理论转换效率达60%以上的量子点型太阳能电池备受人们瞩目。硅量子点太阳能电池主要通过基体材料中析出纳米晶粒尺寸的硅量子点,当晶粒尺度与激子波尔半径相近时,系统形成一系列的离散量子能级,电子在其中的运动就会受到限制,从而表现出了量子尺寸效应。其中相关的尺寸效应与限制效应给电池带来了极大的优势,比如说带隙随着粒子的尺寸可调,截面大,吸收系数大,以及较长的激子寿命等。硅量子点太阳能电池的材料,主要有氧化硅、碳化硅、以及氮化硅。然而实验表明:氮化硅的带隙最适合作为基体材料。富硅氮化硅的研究也越来越引起人们瞩目。因而氮化硅的研究在光伏领域具有重要的意义。 1.2 氮化硅的制备方法 目前,用来制备氮化硅薄膜的方法主要有:常压化学气相沉积(APCVD)、低压化学气相沉积法(LPCVD)、等离子增强型化学气相沉积法(PECVD)、射频等离子增强型化学气相沉积法(RF-PECVD)、光化学气相淀积(光 CVD)、 射频(RF)磁控反应溅射法等。前三种,人们应用的最多,因而也是研究氮化硅的主流方法。 1.2.1 常压化学气相沉积(APCVD) 常压化学气相沉积就是在常压的环境下,反应气体受热后被N2或Ar等气体输运到加热的高温基片上,然后经过化合反应或热分解,生成固态薄膜的沉积方法。由于这种沉积是在常压下进行的,仅仅依靠热量来激活反应的气体从而实现薄膜的沉积,所以与其它化学气相沉积方法相比,设备非常简单,操作方便,是早期制备氮化硅薄膜的主要方法。但是,由于反应是在常压条件下进行的,所以在生成薄膜材料的同时也产生了各种的副产物,而且常压下分子的扩散速率小,不能及时的排出副产物,即限制了沉积的速率,同时又增加了膜层的污染可能性,导致薄膜质量下降。由于该方法沉积温度较高(一般大于l000K),逐渐被后来的低压化学气相沉积和等离子体增强化学气相沉积所取代。 1.2.2 低压化学气相沉积(LPCVD) 由于常压化学气相沉积制备的氮化硅薄膜不能满足器件性能日益提高的要求,所以必须寻找新的沉积方法,常压化学气相沉积制备的氮化硅薄膜的不足之处在于沉积的速率低,薄膜污染严重,其原因是反应室中的高压强降低了分子的扩散速率和排出污染物的能力,由热力学知识可知,低压下,气体分子的平均自由程增大,分子的扩散速率增大,从而可以提高薄膜在基片表面的沉积速率;同时,低压下,气体分子在输运过程中的碰撞物理与电子信息学院毕业论文 3 几率小,也就是说在空间生成污染物的可能性小,这就从污染源上减小了薄膜受污染的可能性,正是利用了这一原理,人们在APCVD方法的基础上研制出了LPCVD的方法,LPCVD方法克服了APCVD方法沉积速率小、膜层污染严重等缺点,因而所制备氮化硅薄膜的均匀性良好、质量高。并且LPCVD方法还能够处理数目较多的薄膜基片、成本低、沉积的氮化硅薄膜强度高、抗化学腐蚀能力强、现已成为制备氮化硅薄膜的主要方法之一。 然而,LPCVD方法也有不足的地方,其中最主要的一点,就是它的沉积温度一般要高于1000K,仍然属于高温的沉积工艺。高温沉积会带来以下的主要问题:(1)容易引起基板结构上变形和组织上变化,从而会降低基板材料的机械性能(2)基底材料与膜层材料之间在高温下也会相互的扩散,在界面上形成某些脆相性,从而会削弱两者之间的结合力(3)高温下,基板中的缺陷会继续的生长和漫延,杂质也会发生再分布,在不同的程度上影响了薄膜的界面特性。这些决定了LPCVD方法不能用于非耐热性基片上的薄膜沉积,如Ⅲ-Ⅴ族元素材料、有机材料以及塑料、普通玻璃等 1.2.3 等离子体增强化学气相沉积(PECVD) 等离子体增强化学气相沉积是利用辉光放电的物理作用[7]来激活粒子的一种化学气相沉积反应,是集等离子体辉光放电和化学气相沉积于一体的薄膜沉积技术,在辉光放电所形成的等离子体场中,由于电子和离子的质量相差悬殊,二者通过碰撞交换能量的过程相对比较缓慢,所以在等离子体的内部没有统一的温度,只有电子气温度和离子温度,此时,电子气的温度约比普通气体分子的平均温度高出10~100倍,电子的能量为1~10ev,相当于温度10~10OK,而气体的温度都在10K以下,一般情况下原子、分子、离子等粒子温度只有300~600K左右,所以,从宏观上看,这种等离子体的温度不高,但在其内部却处于受激发的状态,其电子的能量足以使分子键断裂,并导致具有化学活性的物质(活化分子、原子、离子、原子团等)产生,使本来需要在高温下才能进行的化学反应,当处于等离子体场中时,在较低的温度下甚至在常温下,就能在基片上形成固态的薄膜,因此应用PECVD方法沉积氮化硅,就不会出现因温度过高而引起的器件失效问题,另外,PECVD反应沉积的氮化硅,内含的氢对于器件表面钝化是LPCVD沉积的氮化硅薄膜所不具备的,PECVD借助等离子体的电激活作用实现了低温(450~600K)下,沉积优质的薄膜,其操作方法灵活,工艺重复性好,尤其是可以在不同复杂形状的基板上,沉积各种薄膜。此外,PECVD同溅射法一样,可以通过改变沉积参数的方法,制备不同应力状态下的薄膜以满足不同的需要。这种方法适应了当前大规模集成电路生产,由高温工艺向低

相关主题