当前位置:文档之家› 一种新型高精度高温度稳定性恒流源研究

一种新型高精度高温度稳定性恒流源研究

一种新型高精度高温度稳定性恒流源研究 摘 要:研究一种应用混合集成电路技术实现的新型高精度和高温度稳定性的恒流源,以适应当前系统对恒流源高精度、高温度稳定性和较大电流的需求。在详细分析电路结构和工作原理的基础上,讨论如何提高电路的精度和温度稳定性,并给出具体的解决方案,对关键部分给出了设计电路图,最后对采样电阻的设计和布线艺术给出了合理的方案。投片测试分析表明:该设计安全可靠,达到高温度稳定性和高精度设计目标。该电路具有较小的体积和较好的性能,满足型号系统的要求。灵活的设计方式使其具有较好的使用价值和应用前景。 关键词:恒流源;电压基准;采样电阻;温度稳定性;误差放大器;温度补偿

Research of a New ype of Constant Current ource with igh[CD2]precision [JZ]and igh emperature tability JIANG ongyu (Xi′an Institute of Microelectronics echnology,Xi′an,71004,China)?オ? Abstract:Using the hybrid integrated circuit technology,a new type of constant current source with high[CD2]precision temperature stability to accommodate current constant current source of high accuracy,high temperature stability and larger current demand is studiedIn a detailed analysis of the structure and working principle circuit on the basis of circuit discussed how to improve the accuracy and temperature stability,and specific solutions are given on the key part of the design schematics,sampling resistor on the final design and layout art is a reasonable optionVote[CD2]test analysis show that:the design is safe,reliable,high temperature stability and achieve high[CD2]precision design goalshe circuit has a smaller size and better performance to meet the requirements of the model systemFlexible design has better ways to use and application prospects Keywords:constant current source;voltage reference;sampling resistance;temperature stability;error amplifier;temperature compensation?オ?

模拟电路里广泛包含基准源,且在许多系统电路里都是关键部件,它的电气特性将直接影响到整个系统的电气特性。在电路设计中,往往需要一些输出电流大、温度稳定性好、精度高的恒流源。具有这些特性的恒流源,往往对电路中电阻的精度要求和温度系数的要求很高,这对一次集成技术来说是一个难题。而采用混合集成薄膜工艺生产的电阻能很好地达到电路系统的要求,使用混合集成工艺技术对扩流效果也有很好的帮助。本文就是采用混合集成技术,设计一款具有高温度稳定性和高精度的恒流源。

1 工作原理 恒流源是由电压基准、比较放大、控制调整和采样等部分组成的直流负反馈自动调节系统。恒流源的设计方法有多种,常用的串联调整型恒流电源原理框图如图1所示。 主要包括调整管、采样电阻、基准电压、误差放大器和辅助电源等环节。通过采样电阻将输出电流转换成电压,然后与基准电压进行比较,比较放大后的信号推动调整管对输出电流进行调整,最后达到输出电流恒定。

2 电路设计 电压[CD2]电流转换是恒流源的核心。最基本的恒流源电路如图2所示。 存在的问题:由于采样电阻与负载串连,流过的电流通常比较大,因此局部温度也会随之上升,导致元器件温度上升,恒流源的温度稳定性变坏。其次,恒流电源的输出电流全部流过调整管,因此调整管上的功耗也很大,必须选择大功率的晶体管,然而大功率晶体管需要较大的基极驱动电流,对运放有较高驱动能力的要求。再次,双极型三极管的漏电流和电流放大系数对温度比较敏感,温度稳定性较差。还有,电压[CD2]电流变换器使用的负反馈闭环控制,电流稳定度与放大器放大倍数有直接关系,在大功率电源里基本上是倒数关系。例如,若要求电流源的稳定度要达到小于10-4,则放大器的放大倍数要大于一万倍。运方的温度漂移和失调对电路的精度和温度稳定性有很大的影响。 要解决上述问题,需要对电路的控制调整部分进行改进。改进后的电路如图3所示:

用PMO[CD2]PNP复合管来代替原来的PNP管。小信号等效模型如图4所示: 极电流,能给三极管提供较大的基极电流,满足了运放的驱动压力要求,使运放不需要过大的驱动能力,电路就能正常工作。PMO管具有温度稳定性好、噪声低的特点,弥补三极管的不足,有助于提高恒流源的温度稳定性。

选用的运放应该有较高的增益,较低的输入失调电压和失调电流,以及低温漂和低噪声电压。在实际的版图设计时,减小局部区域功率密度,对整体温度系数的降低也能起到很好的作用。 [B3]22 电压基准设计 基准源类型较多,常见的有齐纳二极管、隐埋齐纳二极管和带隙基准源。3种基准源的优缺点如表1所示。根据恒流源电路的要求和特点,这里选择使用隐埋齐纳二极管组成电压基准电路。为了进一步提高基准电压高稳定性,采用如图所示的电路结构。 如图所示,流过隐埋齐纳二极管的电流: 类型[J0]齐纳二极管(两端器件)隐埋齐纳二极管(串联)带隙电压基准 (串联) 优点输入电压范围宽精度优于1%输入电压范围宽、精度从001%~01%、具有温度补偿,温度稳定性较好 输入电压范围小、静态电流小,μA 至1 mA左右、不需要外接电阻、精度从00%~1、压差小、温度稳定性较好 缺点 静态电流较大(1~10 mA),适合对功耗要求不严的应用、需要外接电阻、精度低、电流只能流入压差大温度稳定性较差比带隙电压基准源的静态电流大 (1~10 mA), 输入电压范围小、存在调整损耗、 潜在问题长期稳定性部分器件不能吸入电流部分器件不能吸入电流 价格底适中较高 应用适合对功耗要求不严的应用适合对功耗要求不严的应用适合要求功耗小的应用[] [B3]23 温度补偿及采样电阻的设计 在先前的电路设计中,采取了提高温度稳定性的一些措施。随着使用环境的变化,对温度稳定性的要求越来越高,为了进一步提高电路的温度稳定性,目前普遍采用的是恒温槽温度控制和局部温度控制。温度控制需要附加的电路和器件,增加了电路的体积和功耗以及成本。启动(恒温)时间过长、衬底温度不均匀使温度系数的降低受到限制,衬底的工作温度较高,影响了器件的寿命和可靠性。这使得需要寻求新的方式满足上述要求。 数和采样电阻的温度系数。对于电压基准源,尽管采取了措施提高温度稳定性,但对于对温度系数要求较高的电路是不够的。由于采用的是隐埋齐纳二极管式的电压基准,其出厂时温度系数的大小和方向是使用者无法控制的,这足够消耗掉在电路设计时提高温度稳定性所做的努力。解决的方法是选用采样电阻作为温度补偿执行器件、通过特殊的设计和制作、使采样电阻具有和电源基准大小方向合适的温度系数。弥补电压基准的温度系数对恒流源温度系数的影响,同时亦可弥补其他元器件温度系数的影响。 采样电阻的设计:在采样电阻的设计中采用使用先进工艺制作的薄膜电阻。薄膜电阻具有较小的方阻,在同一块电路中设计2种正负温度系数不同的电阻网络,根据电压基准温度系数的特征,串接一部分正温度系数电阻和一部分负温度系数电阻的组成采样电阻,使其整体呈现的温度系数与电压基准温度系数互补,这样就可以补偿前级温度系数的偏差,降低整个系统的温度系数,调整一个合适的补偿点,实现“0”温度系数。这样,在没有增加系统负担的情况下,实现了提高温度稳定性的目标。试验证明这个方法在实际生产中是便捷的、高效的。 另外,根据采样电阻的特殊设计,选用采样电阻的不同连接方式,可以在一定的范围内选择恒流源输出电流的大小。

3 测试分析 经过在生产线上投片,对4个批次的电路跟踪测试。在2~8 ℃的温度范围内,76%的电路温度系数控制在 PPM以内,在输出恒流电流为40 mA时精度控制在±‰。经过分析,认为影响温度系数最主要的原因采样电阻的设计,因为需要采样电阻的温度系数补偿,这里希望得到的温度系数是精确可控的,而不是越小越好。这需要电阻制作先进工艺的技术支撑。 4 布线的艺术

相关主题