当前位置:文档之家› 小型气象监测系统

小型气象监测系统

1 电子信息学院 课程设计 课程名:《信号监测与处理》 题 目: 小型气象监测系统 类 别: 【设计】 班 级: BX1105 学 号: 姓 名:

评语: 学习态度:【很好】 【一般】 【较差】 程序编写:【完整】 【部分完整】 【不完整】 得出结论:【正确】 【部分正确】 【不正确】 报告书写:【规范】 【一般】 【不规范】

成绩: 指导教师: 完成时间:2012年6月8日 批阅时间: 年 月 日 2

1.设计任务和要求 现通过传感器设计一款既能测量温湿度也可同时测量风速风向的设备,可服务于生产、生活的众多领域。 2.设计应用背景

现在社会高度发达,气象状况变化万千,气象监测和灾害预警工程对于保障社会经济发展和人民生产生活有重要意义,气候状况对经济活动的影响也越累越显著,人们需要实时了解当前的气象状况。风速、风向以及温度湿度测量是气象监测的一项重要内容。 该气象监测系统通过各类风速风向温度湿度传感器将检测到的数据自动进行汇总分析,并传输到终端平台。可以达到无人监管,数据自动传输,更加省时省力方便快捷。

3.难点分析 难点:1.该系统如果采用有线传输,并且测量较远的气象环境时,会需要较多线缆才能检测到数据。如果采用无线传输则会随着测量距离的原理数据会出现更大误差。 解决方案:1.测量近距离的气象情况,或者通过GPRS对数据进行远距离高精度传输。

4.实施方案

4.1原理分析与实施方法 方案一: 风速风向传感器结构图如下图4-1。 3

图4-1风速风向传感器结构图 风速风向仪原理: 风向、风速仪用于测量瞬时风速风向,具有自动显示功能。主要由支杆,风标,风杯,风

速风向感应器组成,风标的指向即为来风方向,根据风杯的转速来计算出风速。内置或外接各种进口原装传感器,采用微功耗单片机对外部数据进行采样,并将采集的数据保存在系统不易失存储器内。风向风速仪由微处理器和高动态特性的测风传感器组成。 风向、风速传感器为机械转动式传感器,感应距地面11m 处的空气流动,对空气流动速度及方向进行检测及光电转换,并进行数字量化、时间平均、存储等处理,再通过系统的通信设备及路由传输至室内气象观测工作站。室内数据处理工作站(DPU) 计算并作出一个2 分钟平均风速风向报告,依据传感器5 秒的风数据,产生阵风和不定风向的报告,并对应于跑道方向及侧垂方向进行矢量风的分解。

风速传感器结构图 4

风速传感器原理 风速与脉冲频率的转换公式为: V (m/ s) = 011f (Hz) 即每10 个脉冲为1m/ s 的风速量。 风速传感器主要指标为: 电源为DC12V ,启动风速< 015m/ s ,使用环境- 40 度~ + 50 度(0~100 %RH)

风速传感器的感应元件是三杯风组件,由三个碳纤维风杯和杯架组成。转换器为多齿转杯和狭缝光耦。当风杯受水平风力作用而旋转时,通过活轴转杯在狭缝光耦中的转动,输出频率的信号。

风向传感器结构图 5 风向传感器工作原理 风向传感器主要依据风标方位及其产生的格雷 码对照进行检测。6 位格雷码有64 个方位,检测时 选择典型方位(如0°、90°、180°、270°) 所对应的格雷码 判断检测。由格雷码制对应表可知,四个典型方位与 其格雷码对应关系为: 0°(360°) 000000 90° 110000 180° 101000 270° 011000

风向传感器的变换器采用精密导电塑料电位器,当风向发生变化,尾翼转动通过轴杆带动

电位器轴芯转动,从而在电位器的活动端产生变化的电阻信号输出。风向传感器的变换器为码盘和光电组件。当风标随风向变化而转动时,通过轴带动码盘在光电组件缝隙中的转动。产生 6

的光电信号对应当时风向的格雷码输出。 温湿度工作原理: 温湿度测量是采用AM2301数字温湿度传感器,这是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的可靠性与卓越的长期稳定性。传感器包括一个电容式感湿元件

和一个NTC测温元件(AM2303采用DS18B20测温度),并与一个高性能8位单片机相连接。每个传感器都在极为精确的湿度校验室中进行校准。校准系数以程序的形式储存在OTP内存中,传感器内部在检测信号的处理过程中要调用这些校准系数。单线制串行接口,使系统集成变得简易快捷。超小的体积、极低的功耗,信号传输距离可达20米以上,使其成为各类应用甚至最为苛刻的应用场合的最佳选则。产品为 4 针单排引脚封装。连接方便,特殊封装形式可根据用户需求而提供。因此该产品具有品质卓越、超快响应、抗干扰能力强、性价比极高等优点。

AM2303数字式温湿度传感器输出数据格式: DATA=湿度数据高位+湿度数据地位+温度数据高位+温度数据低位+校验和

测温度原理图 7

图4-2 DS18B20工作原理框图 DS18B20工作原理: DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图2-6-1所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

湿敏元件: 湿度变化 电容变化 电压变化 输出电量 收集数据

HS1101 在电路中相当于一个电容器件,它的电容量随着所测空气湿度的增加而增大,为了能将电容的变化转换成电压的变化,我们设计了振荡电路、消除零点电容影响电路、整流路、积分电路、电压—电流转换电路、放大电路等 8

工作原理图 湿度检测振荡电路图 振荡电路的作用是将电容的变化量转化为频率可变的方波。或非门G1 工作在电压传输特性的转折区,把它的输出电压直接连接到或非门G2 的输入端。G2即可得到一个介于高低电平之间的静态偏置电压,从而使G2 的静态工作点也处于电压传输特性转折区上。反馈环路中电容使电路在两个暂稳态之间往复振荡。由于电容充放电的时间T 为2.2RC,所以输出的方波频率f1/2.2RC,可见输出频率和电容值成反比。通过这个电路使湿度信号变为电容值,最后变为频率信号输出。 9

线性输出信号调整电路 湿度的脉冲信号再经过后面的二极管整流、RC积分电路,得到随温度变化的电压。由于信号比较微弱,再经过一个同向比例放大器把信号放大,最终把信号调理为0~3V的输出。

方案二: 360°平面全风向风速传感器: 360°平面全风向风速传感器,它通过多孔压力测试技术可以测量正负180°范围内气流,极大地扩大了可测量的范围。并且可以与计算机通过无线通信实现数据的传输,以方便数据的后续处理。这样的仪器工作可靠,精度较高,维护方便,并适合使用频繁的场合。该系统可以经过改进封装使其适用于更多的场合,比如实时环境监控,非定常流测量,横风校准仪(用于坦克、火炮等的弹道校准)和教学科研中的流动测量。 系统分为硬件和软件两部分。系统硬件可以分为模型、压强传感器模块、数据处理模块、显示模块、无线模块和上位机用户平台六部分。六个模块相互对应,共同完成数据从采集、转换、处理、存储和向上位机传输和显示的功能。系统软件包括单片机控制软件和上位机平台。

图1 系统框图 10

模型模块为一圆柱,8个测压孔均布于圆柱某一平面。如下图: 该模型为流体力学中的经典模型:圆柱绕流,测量原理基于七孔探针。七孔探针可测量

气流偏角为78°的大偏角流动,测试精度为1%,并且可以得到空间流场某点的总压、静压。我们利用七孔探针测量大流动角下的总压、静压及方位角的原理,重新组织公式得到了适合我们使用的公式,并且进行了精度的验证。结果证明我们的公式是有足够的精度的,能够满足工程测量的要求。 修正后的公式如下:

)(*5.01111iiiiiPPPPPk

)(5.011iiiqPPPqk

图2 圆柱俯视图 11

20Hz--各孔压力随转角的变化曲线-4-3-2-1012345

090180270360转角压

力(mm H2O)

1孔2孔3孔4孔5孔6孔7孔8孔

对上图进行曲线拟合,则可得到该参考大气压下的实验公式。 由压强传感器模块输出的信号经过+1.5V电压偏置后接至MSP430的A/D通道,等待数据处理。与此同时,PC通过编写好的软件控制A/D转换的开始,模拟电压信号经过A/D转换成数字信号,经过单片机处理之后通过AD1602液晶显示速度及风向,并将数据经RS232接口通过无线模块传输至PC。PC终端将数据处理后记录,方便进一步的研究。

3. 系统硬件设计

图3 根据上述两个公式拟合得曲线

相关主题