当前位置:文档之家› 谐波分析

谐波分析

一起谐波引发的纠纷马国强山东蓬莱市电业公司纠纷始末2004年初,山东省蓬莱市政府部门在招商引资中从上海引进了某炼钢厂项目,在为其提供优惠政策的同时,要求供电企业积极配合尽快上电。

由于时间紧、任务重,负责为该厂提供配电装置的电业公司直属企业--山东蓬莱电力器材厂按照厂方要求为其进行了图纸设计并提供相关产品。

但令他们没有想到的是,炼钢厂的生产设备是电力谐波危害巨大的中频炼钢炉,由于没有安装滤波装置,对电网的安全运行存在极大危害,随后的纠纷也就发生了。

2004年7月,配电设备现场安装完成后不久,炼钢厂就投入了正常生产。

但没几天,就有电话打到电力器材厂,原因是其两面电容柜全部烧毁,他们要求尽快更换。

为了妥善处理这一事件,器材厂技术人员与电业公司生产技术部有关人员一同去了事故现场。

只见两面电容柜已是面目全非,柜内所有电容器均被烧毁。

经检查分析,电业公司生产技术部技术人员认为:电容柜的烧毁是由于用户使用的是中频炼钢炉,没有安装滤波装置,在运行过程中产生较大高次谐波,进而将用于无功补偿的所有电容器悉数烧毁。

他们提出了处理意见:(1)炼钢厂在明知自己的生产设备需要滤波装置却没安装的情况下,电容柜的烧毁是用户用电设备对电网注入的谐波电流超标所致,因此更换电容柜的费用由用户承担。

(2)马上对炼钢厂予以停电,因为该炼钢设备还有可能对运行的变压器及其他用户造成危害。

(3)用户要尽快加装谐波滤波装置,否则不予以送电。

但炼钢厂不服,他们指出:(1)炼钢厂本身使用中频炼钢炉的情况已经告诉了电力器材厂,由于厂方人员疏忽造成了设计上的缺陷,导致了这次事故的发生。

(2)很有可能是电网本身携带谐波导致了这次事故,更换电容柜及加装滤波装置的费用应由供电企业承担,炼钢厂没有责任。

(3)若供电企业给炼钢厂停电,炼钢厂就撤资。

在双方争执不下的情况下,这起纠纷最终由市政府出面,本着顾全大局的需要,电力器材厂牺牲自身利益,重新为炼钢厂安装了电容柜,滤波装置由炼钢厂负责购进。

事后反思谐波的危害。

谐波的危害要从我国的配电体制谈起,我国一直采用50赫兹交流供电制式,在稳压保护的过程中,很少考虑到谐波的危害。

这样一来为谐波的产生和延续提供了条件,使得谐波相互作用,一方面损坏电器,另一方面消耗大量电能。

如图表所示为50赫兹交流供电下的正序、负序和零序谐波的分类。

正是由于各种谐波的存在,使50赫兹的正弦交流电发生波形畸变,影响了正常的工作。

谐波危害主要在于:(1)在三相四线变压器中,3次整数倍的谐波代数叠加,感应到变压器一侧,造成线圈过热,同时使中线电流过大,发热直至烧坏。

(2)在电机运行过程中,谐波使交流电压波形严重失真,烧毁电机。

(3)在无功补偿电路中,谐波会形成谐振,烧坏电容柜。

(4)在日常生活中,日光灯灯管被烧坏,启辉器无法启动等情况都是由谐波造成的。

除了对电路造成危害之外,谐波的存在,同时也影响继电保护和自动装置工作的可靠性。

上述事件中电容柜烧毁就是电力谐波危害的一种,当含有谐波的电压加在电容器两端时,谐波电流叠加在电容器的基波上,使电容器电流变大,温度升高,寿命缩短,引起电容器过负荷从而被烧毁。

同时谐波又与电容一起在电网中造成电力谐波谐振,使故障加剧。

法律责任。

任何电力用户,自报装接火开始,不管是否签订书面供用电协议,都与供电企业形成供用电合同关系,都要依法用电,不能违背法律、法规所规定的内容。

我国1993年颁布GB/T14549《电能质量公用电网谐波》规定:注入公共连接点的谐波电流允许值的用户,必须安装电力谐波滤波器,以限制注入公用电网的谐波。

《低压电气及电子设备发出的谐波电流限值(设备每相输入电流≤16安)》,要求购置的用电设备,经过试验证实,符合该标准限值才允许接入配电系统中。

《电业营业规则》第5章第55条也明确规定:电网公共连接点电压正弦波畸变率和用户注入电网的谐波电流不得超过国家标准GB/T14549的规定。

用户具有非线性阻抗特性的用电设备接入电网后运行所注入电网的谐波电流和引起公共连接点电压正弦波畸变超过标准时,用户必须采取措施予以消除。

否则,供电企业可中止对其供电。

上述事件中,炼钢厂首先负有不可推卸的责任,在明知自己的生产设备对电网安全运行有极大危害的情况下,不仅没有安装滤波装置,还把电容柜烧毁的责任推给了供电企业,这显然是不合理的。

其次,供电企业自身没能及时做好该用户报装接电后谐波审查阶段的工作,致使谐波危害进入电网,造成了这次纠纷的发生,也负有责任。

为了减少谐波的不良影响,供电企业必须把谐波管理纳入日常的生产管理中,建章立制,采取技术措施,强化谐波监督管理。

(1)必须建立谐波监督管理体系,明确职责,认真开展谐波的测试、研究、分析以及技术培训。

认真分析产生谐波的原因,积极开展事故预想,制定切实可行的反事故措施,对发生的谐波事故及异常的原因坚持查不清不放过,防范措施不落实不放过。

(2)认真做好业扩、报装接电及现有非线性负荷谐波的设计、审查、统计工作,建立完善的技术资料档案。

采取行政手段,强化谐波检测仪器、仪表的检验和认证工作,积极推广治理谐波的新技术,切实抓好超标客户的谐波管理。

(3)整流设备是电网中主要的谐波源之一,通过改造换流装置,采取特殊的接线方式或将相数较少的换流变压器联结成等效的多相形式,增加换流器相数,或利用相互间有一定移相角的换流变压器,有效的消除较大的低次谐波。

通过加大技术改造力度,既可节省大量资金,又能够达到抑制或降低谐波分量的理想效果。

(4)由于中频炼钢炉、电弧炉、电力机车、卷扬机、轧机等用电设备用电负荷不稳定,变动频率较高,不仅会产生较强的高次谐波,而且极易引起电业电压的波动和闪变。

甚至造成系统三相严重的不平衡,严重影响电网的供电质量。

应采取快速可变的电抗器或电容元件组合而成,形成动态无功补偿装置(或称静止无功补偿装置)与谐波源并联,不仅可有效的减少谐波量,而且具有抑制电压波动、闪变,增加系统阻尼,提高系统功率因数,保证电网电业质量的功能。

静补装置一次性投资较大,但是,经济和社会效益较好。

(5)交流滤波装置能够有效的吸收谐波源所产生的谐波电流,降低谐波电压,是抑制谐波"污染"的有效措施之一。

由于其一般由电容器、电抗器、电阻器等根据一定技术要求组合而成,因其结构简单,运行可靠,维护方便,一次性投资较少等特点而得到广泛应用。

(6)采取技术措施加强电容器管理,通过改变电容器的串联电抗器或将电容器组的某支路改为滤波器,限制电容器的投入量,可有效的防止或减少并联电容器对谐波的放大作用,从而保证电容器的安全运行。

(7)通过采用高性能的用电设备,改善其谐波的保护性能,提高设备的抗谐波干扰能力,增加系统的承受谐波能力,减少谐波事故的发生。

谐波的抑制与利用Restraint and Use of Harmonic摘要:针对谐波的危害性,利用数学理论对谐波的叠加作用和高次谐波的特性进行定性分析,并在此基础上给出抑制谐波危害的办法。

同时,也具体地分析对谐波的利用方法。

关键词:谐波叠加作用高次谐波随着现代电气化程度的不断提高,人们对配电质量的要求越来越高。

目前,虽然各类稳压设备正逐步更新换代,但是仍然没有阻拦住谐波的恣意破坏;相反,随之而来的谐波危害却越来越不可忽视。

因此,很有必要对谐波的产生和危害性进行定性分析,以便加深认识,扬弃并举,在抑制谐波危害的同时,充分发挥其有利方面。

1谐波的危害谐波的危害要从我国的配电体制谈起。

我国一直采用50Hz交流供电制式,在稳压保护的过程中,很少考虑到谐波的危害。

这样一来为谐波的产生和延续提供了条件,使得谐波相互作用,一方面损坏电器,另一方面消耗大量电能。

表1为50Hz交流供电体制下的正序、负序和零序谐波的分类。

表1谐波分类正是由于各种谐波的存在,使50Hz的正弦交流电发生波形畸变,影响了正常的工作。

在三相四线供电变压器中,3次整数倍的谐波代数叠加,感应到变压器一次侧,造成线圈过热,同时使中线电流过大,发热,甚至烧坏。

在电机运行过程中,谐波使交流电压波形严重失真,烧坏电机。

在无功补偿电路中,谐波会形成谐振,烧坏电容柜。

在日常生活中,日光灯灯管被烧坏,起辉器无法启动等情况都是由谐波造成的。

除了对电路造成危害之外,谐波的存在,也使配电功率因数的提高受到制约。

利用电容补偿电路提高功率因数时,不可避免地带来谐波的负面影响。

如果谐波次数较高,无功补偿电容很可能被击穿。

2谐波的定性分析各次谐波在电路中的作用是不相同的,现对谐波常见的两种作用效果进行定性分析,找出原因,加以抑制。

2.1谐波的叠加特性谐波的叠加与相序有关。

在同一电路中,有些谐波相互作用时,相互减弱或相互抵消,但是,更多的场合往往相互叠加,使波形发生明显的畸变。

例如,仅有3次谐波出现时,波形如图1所示;当3次、5次谐波同时出现时,就会使正弦波明显地发生了变化,如图2所示。

图1u1、u3及其叠加波形图2u1、u3、u5及其叠加波形如果继续叠加,正弦波就会发生质的变化。

方波可用傅里叶级数展开如下式。

ui=4Um[sin2πft+(sin6πft)/3+(sin10πft)/5+…+(sin2kπft)/k〗/π(1)其中,ui为叠加之后的电压,Um为基波振幅,f为基波的频率50Hz,k=1、3、5……为奇数。

当然,其它种类的谐波叠加的情况也很多,如锯齿波就含有一系列的偶次谐波(见图3)图3锯齿波波形其傅里叶级数表达式为ui=A/2-A[sin2πft+(sin4πft)/2+(sin6πft)/3+…(sin2kπft)/k〗/π(2)其中,ui为叠加之后的电压,A为锯齿波电压幅值,f为基波频率50Hz,k为自然数。

从以上分析可看出,谐波的叠加作用是不可忽视的,这一点在三相四线供电制中表现得最明显。

由于谐波相互叠加,中线会因电流过大而发热,如图4所示。

另外,配电线路中的中性母线和接线板过载过热等现象也是由于谐波叠加造成的。

图4三相四线供电制中的中线电流2.2高次谐波的特性高次谐波也和基波一样,总是选择低阻抗路径通过,但与基波不同的是,高次谐波优先选择容性电路。

因为电容具有通高频阻低频的特性。

可用数学表达式Xc=1/2πfC来分析,谐波电路中电抗Xc的大小与谐波频率f、电容容量C的乘积成反比,因此谐波频率越高,容抗Xc越小,谐波电流就越大,危害性就越大。

这点在无功补偿电路中表现得最明显。

如果不注重分析和测量谐波的含量,而一味地依靠无功补偿来提高功率因数,高次谐波就会烧坏补偿电容。

另外高次谐波的危害性,在日常生活中常见的例子就是日光灯的寿命不长和起辉器的损坏。

当然谐波的危害,远远不止这两种作用。

象负序谐波含量过高会使电机产生反向旋转磁场,使线圈发热;高次谐波会产生电磁场,使配电盘产生机械谐振,发出噪声;使控制电路误动作等等各种危害。

相关主题