当前位置:
文档之家› 全带宽波导功分器的研究与设计
全带宽波导功分器的研究与设计
学位授予单位和日期 答辩委员会主席 评阅人
电子科技大学
注 1:注明《国际十进分类法 UDC》的类号。
RESEARCH AND DESIGN OF THE FULLBAND WAVEGUIDE POWER DIVIDERS
A Thesis Submitted to University of Electronic Science and Technology of China
III
目录
目 录
第一章 绪论..................................................................................................................... 1 1.1 课题的研究背景及其意义................................................................................. 1 1.2 国内外发展动态................................................................................................. 1 1.3 本论文的主要研究工作及结构安排................................................................. 7 第二章 宽带功分器设计的理论基础............................................................................. 8 2.1 微波功分器的简介.............................................................................................. 8 2.1.1 功分器的基本网络分析............................................................................ 9 2.1.2 四端口网络的性质................................................................................. 10 2.2 Wilkinson 功分器原理.......................................................................................12 2.2.1 宽带微带二等分功分器......................................................................... 15 2.3 宽带功分器理论............................................................................................... 16 2.3.1 阻抗变换器的原理和应用...................................................................... 16 2.3.2 脊波导原理及应用.................................................................................. 18 2.4 本章小结............................................................................................................ 22 第三章 宽带波导功分器的研究................................................................................... 23 3.1 波导 E-T 和 H-T 分支...................................................................................... 23 3.2 宽带波导二路功分器设计实例....................................................................... 25 3.3 新型 H-E 面波导功分器的设计和测试...........................................................29 3.3.1 H-E 面波导功分器的仿真优化...............................................................29 3.3.2 H-E 面波导功分器的加工测试...............................................................32 3.4 本章小结........................................................................................................... 34 第四章 新型全带宽 E-H 面波导功分器的设计...........................................................36 4.1 E-H 面波导功分器的初步设计与探讨.............................................................36 4.2 全带宽 E-H 波导功分器的设计.......................................................................41 4.3 新型全带宽 E-H 面波导功分器的加工与测试...............................................47 4.4 本章小结........................................................................................................... 49 第五章 总结与展望....................................................................................................... 52 致 谢............................................................................................................................... 53 参考文献......................................................................................................................... 54 攻硕期间取得的研究成果............................................................................................. 56
论文使用授权
本学位论文作者完全了解电子科技大学有关保留、使用学位论文 的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘, 允许论文被查阅和借阅。本人授权电子科技大学可以将学位论文的全 部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描 等复制手段保存、汇编学位论文。 (保密的学位论文在解密后应遵守此规定) 作者签名: 导师签名: 日期: 年 月 日
II
ABSTRACT
divider is compact and the test results are as such as the simulation results.The power divider can be used in the occasion that the input is not in the same plane with the output port. Keywords: Power divider, multistage impedance matching, ridged waveguide ,full bandwidth, compact
I
ABSTRACT
ABSTRACT
Power divider is a kind of significant microwave passive components, which are widely used in microwave equipment, such as phased array radar, antenna feeder system and power amplifier. Although power divider is mainly used for the power distribution and synthesis, it is also used as a power tuner and the input terminal of the duplexer. Power divider can be divided into two major categories of waveguide cavity and microstrip, the waveguide cavity power divider is wide popularity for its low loss, high power capacity and transmission bandwidth and so on, but it also has some shortcomings,including its volume is too large, high cost to process, not easy integration. Microstrip power dividers with low cost, small volume, stable performance, easy to integrate the advantages of other active circuit, widely used in the field of system integration and miniaturization of microwave, but the lack of transmission power and the insertion loss too big also affects its application.The important working parameters of power divider include input port reflection coefficient, the phase between output ports, the insertion loss in work-band, the isolation of ports, the size of device and other technical indicators.At present, the research of waveguide power divider has achieved fruitful results. The structure of this paper is divided into five chapters, the first chapter is about the research background and development status. In chapter two , we will introduce the theoretical analysis of the characteristics of the power dividers and the odd-even mode analysis method is also presented in this paper. In the end, we will analyze the theoretical of power divider and the broadband transmission theory.In the third chapter,we will simulate two traditional waveguide power dividers, finally put forward and designed a new type of broadband H-E plane waveguide power divider, it can work in ka-band with the relative bandwidth of 36.14%, the phase of the two output ports are same, the product has been processing test. In the fourth chapter,combining the ridge waveguide and multistage impedance matching theory, through to the initial power divider model to explore and improve, finally designed a new full bandwidth E-H plane waveguide power divider. the working range is from 26.4 GHz to 40 GHz ,has realized the full bandwidth transmission. Its insertion loss in passband is lower than -0.25 dB, the phase of the two output ports are difference of 180°, eventually processing power