TE01δ模式介质谐振滤波器技术总结 一、前言 由于通信技术的发展,低费用、更有效、更好品质的无线通信系统而需要高性能,小体积和低损耗滤波器。所以介质滤波器,腔体介质谐振滤波器的研究与开发,是今后滤波器发展的重点所在。
1.1 介质谐振器的工作原理 电磁壁理论 理想的导体壁(电磁率为零)在电磁理论中称为电壁,在电壁上,电场的切向分量为零,磁场的法向分量为零。电磁波入射到电壁上,将会完全反射回来,没有透射波穿透电壁。因此,用电壁围成一个封闭腔,一旦有适当频率的电磁波馈入,波将在腔的电壁上来回反射,在腔内形成电磁驻波,发生电磁谐振。此时即使外部停止向腔内馈送能量,已建立起来的电磁振荡仍将无衰减维持下去。可见电壁空腔是一种谐振器,电磁能量按一定频率在其中振荡。当然,非理想导体壁构成的空腔,也具有电壁空腔的类似特性,只不过外部停止馈送能量后,起内部已建立起来的电磁振荡,不会长期地维持下去,将随时间而逐渐衰减,终于消逝,成为阻尼振荡。谐振器中电磁振荡维持的时间的长短(时间常数)是其Q值高低的一种度量。 高介电常数的介质的界面能使电磁波发生完全的或者近似完全的反射。当然,这两类的界面性质不同,其对电磁波的反射特性也不尽相同。电磁波在导体壁上的电场切向分量为零,故入射波与反射波的电场切向分量相消,仅有法向分量,因为合成场的电力线垂直导体表面,亦即垂直电壁;而在高介电常数的介质界面上,磁场的切向分量近似为零,入射波与反射波的磁场切向分量近似相消,合成场的磁力线近似垂直于介质界面。在电磁场理论中,垂直于磁力线的壁称为磁壁,故高介电常数的介质表面可以近似看为磁壁,只有时,才是真正的磁壁。在磁壁上,磁场切向分量为零,电场法向分量为零,它与电壁对偶。既然电壁所构成的空腔可以作为微波谐振器,显然,磁壁周围的介质块可以近似是个磁谐振器,电磁能量在介质块内振荡,不会穿过磁壁泄露到空气里。 介质波导理论 若将一个介质棒变成一个环,令其首尾相连接,并使连接处电磁波有相同相位,该电磁波就能在环内循环传输,成为一个行波环。如果介质损耗非常小,循环时间就很长,于是电磁波被“禁锢”在介质环内,成为一个环形介质谐振器。介质环的最小平均周长,应该是被导波的一个波导波长。上述的谐振条件并未对介质环的形状加以任何限制,所以环可以是圆的,方的或者其他任意形状。此外,环的内径大小对谐振来说也不是实质性的,内径缩小至零,照样能维持谐振,储存电磁能量 。 最常用的介质谐振器的形状有矩形,圆柱形和圆环形三种,前两种用的更普遍。矩形介质谐振器的工作模式主模是TE11d模,圆柱形的有TE01d模。图中就是两种谐振器的振荡模式。 1.2 介质谐振器的材料 微波介质材料是指在微波频率下使用的介质材料。它具有介电损耗小、频率温度参数接近零的特性。微波介质材料对原材料的要求比较高,要获得高质量的材料须严格按照生产工艺操作。微波介质器件是指应用微波介质材料制成的具有某种功能的器件。常见的是介质谐振器、介质滤波器、介质无线块。 介质滤波器:是由多个介质谐振器通过耦合构成的。
1.3介质谐振器的几种主要结构及尺寸 类型 模式 形状 尺寸 适用频率 (1) 介质谐振器 11//0.43*10/:rDCfLDLDmmCmmsf、单位为谐振频率,单位为Hz SHF频率 <3GHz
(2) 同轴谐振腔 /{}4{}mmsHzrCIfLCf、、意义、单位同上 UHF频率 <2GHz
(3) 带状 电路谐振器 //{}2{}{}4{}(0.60.9)mmsHzwmmsHzwrrCIfCLf: UHF频率 SHF频率
1.4 TE01 谐振单腔的尺寸设计: 谐振单腔可以是矩形腔体,也可是圆柱腔体,为了保证不使谐振器Qu下降很多,和引入TM模谐振单腔的尺寸最小处大约为谐振器直径的1.5倍,高度约要是谐振器厚度的三倍。 1.5微波介质腔的场型 介质谐振器可以激励三种振荡模式:TE、 TM、HE型振荡模式,本文中主要介绍TE01δ。其电场主要在集中于
二、腔体介质谐振滤波器 腔体介质谐振滤波器,是将介质谐振器放置于截止金属波导中去,滤波器的中频率由介质谐振器的谐振频率所决定,耦合带宽可以通过调节谐振器之间的距离或者两谐振器之间的耦合窗口的大小来实现。
2.1主要特性及应用 体积和重量是金属空腔的1%左右。其他优点: 1、可以实现器件的高稳定,高可靠,谐振频率温度系数可达ppm级 2、可以实现谐振器的低损耗,高品质因数,使损耗角正切很小。 3、陶瓷材料加工简便,机械性能良好 4、介质滤波器有很高的脉冲功率容量。 缺点: 1、批量生产工艺控制要非常严格 2、因为谐振器导热能力差,所以平均功率容量小。 3、因为绝大部分电场被束缚在介质谐振器内部,耦合螺杆调节范围很小。
2.2材料与谐振器性能关系 微波介质陶瓷的介电常数主要取决于材料结构中的晶相和制备工艺,与使用频率基本无关。从陶瓷工程学的角度看,除了从组成上考虑微观的晶相类型及组合外,在工艺上使晶粒生长充分,结构致密,也是提高介电常数的途径。 谐振器的品质因数Q受介质损耗(dtg).欧姆损耗(etg).辐射损耗(tg
)
这三个因素的影响,Q主要由介质损耗决定。对于微波介质材料,欧姆损耗和辐射损耗可以忽略,Q约与戒指损耗成反比关系,与r也成反比关系
100//()ddrddQQtgtgtgg此外品质因数Q与微波频率f有
关:'''22()/()//2rrQfgg 式中'()--------有功介电常数;''()
无功介电常数;r材料固有角频
率;材料衰减常数;微波频率为f时的角频率。不同的测试频率有不同的Q值。在比较同一系列材料的Q值时,必须换算成同一个频率才有可比性。 据报道采用静压成型与热压烧结提高了材料的致密性,使材料的微波介质损耗得以降低,介电常数r上升;使用微细瓷粉,提高了材料组成与结
构的均匀性,改善了材料的Q值和频率温度系数;使用微波快速闪烧技术使材料中易挥发成分得到了控制,提高了材料组组成的一致性;在d氮气气氛中退火处理使材料提高了Q值。 三、腔体介质谐振滤波器设计步骤 1、 根据规范书要求,确定滤波器节数以及所需Qu、耦合系数。 2、 根据滤波器外形,以及滤波器节数来确定单个谐振腔尺寸。 3、根据介质金属波导尺寸,来选择适当介电常数的材料,根据所选介质的介电常数r求介质谐振器的尺寸可以根据:
00/cf /0.4LD tan2ddaL
220
0.5862rdD
220
0.58612dD
两端谐振器由于终端耦合结构影响要使谐振器的谐振频率上升,故将两端谐振器厚度增加0.01英寸作为补偿。 一般截止圆波导直径是介质半径的2倍。 3、 由外部q值设计出输入和输出的耦合结构。 4、 根据计算出的耦合系数通过仿真,确认各腔之间耦合窗口的大小。 5、安装调试。 四、TE01δ模式介质谐振滤波器内部的耦合形式。 4.1 馈电处耦合 馈电处的耦合主要是用来满足滤波器设计外部Q值的要求,根据
馈电点处的耦合带宽101BWKEgg,1n
nnBWKEgg
,转换为馈电点处的反射时延的
关系11636.6TKE,636.6n
n
TKE,
可以设计某种耦合结构来满足馈电点处的反射
时延要求。耦合方式基本上是一种探针形式,可以做成圆弧状围绕在谐振器边上,这种探针的长度、探针与谐振器之间的间距是影响到耦合强度的重要因素。 4.2 级间耦合 腔间的耦合是通过耦合窗口实现的,耦合窗口结构的设计要考虑电磁场阵列。窗口应该开在磁场最强的地方,且要与磁场方向保持一致。为了保证耦合的 TM01模式的频率远离TE01模式的耦合频率,窗口的宽度不能太大。TM01模式的藕荷要比TE01模式的强,并且窗口宽度的方向正好是磁场排列的方向。一对相对称的耦合腔之间有两个本征模。一个相对应的在他们之间插入了一个良电壁,另一个是在他们之间插入良磁壁而得到的。实际的场离散是两个本征模式的线形重叠。对于磁耦合而言,因为在耦合区域的周围主要的扰乱能量是磁场所以磁壁的模式场在中间区域。
切线方向穿过窗口的磁场,看起来是不连续的,因为工作模式的磁场改变了符号穿过耦合窗口。但是局部的场强将会支配耦合窗口周围的局部的场强,使得整个切线方向的场强,连续的通过边界。相应的穿过相临腔的工作模式的磁场方向对于非相邻腔的耦合符号的确定是非常重要的. 4.3 交叉耦合 交叉耦合可以用来实现滤波器性能的改进,例如准椭圆函数,恒定时延和非对称响应.四组和三节构成的交叉耦合都被认为是构成对称和非对称传输零点的基本函数.相应的TE01模式腔体和他们等价的耦合谐振模式如下图.
磁耦合被认为是正的耦合可以由电感形式来表示.非相邻的耦合,它与相邻耦合符号相反,可以用认为是一种负的耦合,可以用电容来标注.标注交叉耦合的符号是非常有意义的,在平面上四组和三节里通过窗口来实现交叉耦合是不一样的,通过探针实现也是一样的道理.与其他形式的腔体,例如波导和同轴相比,它的性能不是很真实,因为工作模式的场分布也是不相同的. 五、TE01δ模式介质谐振滤波器高低温解决方案。 5.1滤波器高低温问题要求 介质滤波器因为其主要的电场都集中在谐振器内部,所以谐振器与谐振器