当前位置:文档之家› 生化名词解释简答题

生化名词解释简答题

第一章:核酸9.核酸的变性、复性:当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。

在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。

这个DNA螺旋的重组过程称为“复性”。

10.增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。

11. 减色效应:DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。

12. 噬菌体:一种病毒,它可破坏细菌,并在其中繁殖。

也叫细菌的病毒。

14. DNA的熔解温度(T m值):引起DNA发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(T m)。

15. 分子杂交:不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。

这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。

3. 答:tRNA一级结构具有以下特点:1)分子量较小,大约由73~95个核苷酸组成。

2)分子中含有较多的修饰成分3)3′末端都具有CpCpA-OH的结构。

5′端多为pG,也有pC4)恒定核苷酸,有十几个位置上的核苷酸在几乎所有的tRNA中都不变。

5) tRNA约占细胞总RNA的15%tRNA的二级结构呈“三叶草形”。

在结构上具有某些共同之处,即四臂四环:氨基酸接受臂;反密码(环)臂;二氢尿嘧啶(环)臂;TyC(环)臂;可变环。

tRNA的三级结构:倒挂的L字母tRNA主要功能:在蛋白质生物合成过程中转运氨基酸。

4. 答:在20世纪50年代初,E.Chargaff等应用纸层析技术及紫外分光光度法,对各种生物的DNA分子的碱基组成进行了定量分析,总结出一些共同的规律,这些规律被人们称之为Chargaff出定则。

该定则要点如下:(1)同一生物的所有器官和组织中的DNA的碱基组成是相同的,也就是说,在同一生物中,DNA的碱基组成没有器官和组织的特异性。

(2)不同生物的DNA的碱基组成是不相同的,具有种的特异性,这种差异可用“不对称比率”(A+T/G+C)表示。

(3)亲缘相近的生物中,其DNA碱基组成相似,即不对称比率相近似。

(4)在所有双链DNA中,腺嘌吟与胸腺嘧啶的含量(mol)相等,即A =T;鸟嘌吟与胞嘧啶的含量(mol)相等,即G=C,因此,嘌吟的总数与嘧啶总数也相等, A+ G=C +T。

7.答:核苷、核苷酸、核酸三词常易被初学者混淆。

核苷是碱基与核糖通过糖苷键连接成的糖苷(苷或称甙)化合物。

核苷酸是核苷的磷酸酯,是组成核酸(DNA,RNA)的基本单元。

核酸是核苷酸通过磷酸二酯键连接形成的多聚化合物,故核酸也叫多聚核苷酸。

核苷(nucleoside)、核苷酸(nucleotide)英文名称只有一个字母之差。

第二章:蛋白质3.氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值,用符号pI表示。

4.肽键:一个氨基酸的氨基与另一个氨基酸的羧基脱去一分子水缩合而形成的共价键.10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。

15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。

19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。

20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。

蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。

21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。

6. 答:蛋白质的二级结构指多肽链主链骨架的盘旋和折叠,天然蛋白质的二级结构主要有四种类型:(1)α-螺旋:3.6个氨基酸残基上升一周,沿纵轴的间距为0.54 nm,靠链内氢键维持的稳定的右手螺旋。

(2)β-折叠:由几乎伸展的多肽链侧向聚集在一起,相邻两条肽链间的N-H和C=O间形成氢键连接而形成的锯齿状片层结构。

(3)β -转角:球状蛋白质中存在的一种二级结构,可使多肽走向发生改变,且多处在蛋白质分子的表面。

(4)无规则卷曲:球状蛋白质中存在的一种没有确定规则的盘旋,有利于多肽链形成灵活的,具有特异生物学活性的球状构象。

7.答:稳定蛋白质构象的作用力主要有以下几种:(1)氢键:氢键是一个极性很强的X-H基上的H原子,与另一个极性很强的原子相互作用形成的一种吸引力,本质上属于弱的静电吸引力。

(2)离子键:正负离子间的静电相互作用。

(3)疏水键:疏水性氨基酸侧链避开水相而相互聚集的作用,主要存在于蛋白质分子的内部。

(4)范德华力:非极性分子瞬时偶极间的相互作用,虽是很弱的力,但具有加和性。

氢键、离子键、疏水键和范德华力都属于非共价键,统称次级键。

此外,二硫键(共价键)在维持蛋白质构象方面也起重要作用。

12.答:等电点 Ala:6.02 Lys:9.47 Glu 3.22 ;在电场中Ala 和Glu向正极移动,Lys向负极移动。

第三章:蛋白质1.米氏常数(K m值):用Km值表示,是酶反应速度达到最大反应速度一半时底物的浓度。

2.活性中心:酶分子中直接与底物结合,催化底物发生化学反应的部位,称为酶的活性部位或活性中心,包括结合部位和催化部位。

13.别构酶:酶分子中除了有与底物结合的活性中心外,还有与调节物结合的别构中心。

别构酶与调节物结合后,自身的构象会发生变化,从而调节酶活性,所以称它为别构酶或变构酶。

3.同工酶:又称同功酶,是指催化的化学反应相同,但组成结构不完全相同的一组酶。

4.酶原:没有活性的酶的前提物。

五、问答题及计算题(解题要点)1.答:酶的化学本质是蛋白质。

作为生物催化剂,酶的特点是:①酶具有很高的催化效率;②酶的催化作用具有高度专一性;③酶作用一般都要求温和的条件;④酶的催化活性在细胞内受到严格的调节控制;⑤酶的催化活件与辅因子有关。

2. 答:根据国际生化联合会酶委员会的建议,酶分为六大类:①氧化还原酶类;②转移酶类;③水解酶类;④裂合酶类;⑤异构酶类;⑥连接酶类(合成酶类)。

答:酶是生物活细胞产生的具有催化活性的蛋白质。

但目前也发现了具有催化活性的RNA这种有催化活性的RNA叫做ribozyme(核酶)。

3. 答:酶的活性中心又叫做酶的活性部位。

酶分子中直接与底物结合,催化底物发生化学反应的部位,称为酶的活性中心。

酶活性中心按其功能可分为部分,结合部位和催化部位。

4.答:(1)邻近效应和定向效应:指酶和底物结合成中间络合物的反应中,底物分子从稀溶液中密集到活性中心区,使活性中心的催化基团与底物的反应基因之间正确定向排列所产生的效应。

(2)诱导与应变效应:酶使底物分子中的敏感键发生变形,从而促使底物中的敏感键更易破裂。

(3)共价催化:共价催化是指酶活性中心中的催化基团首先以共价键与底物结合,生成—个活性较高的中间产物,此个间产物容易向着最终产物的方向变化。

(4)酸碱催化:酸碱催化剂是催化有机反应的最普遍最有效的催化剂。

酸碱催化主要是广义的酸碱催化剂,指的是两活性中心处的催化基团,在促进底物的变化中起质子供体及质子受体的作用。

(5)微环境的影响:天然存在的酶分子内,通常是非极性的侧链埋藏在内部,极性的侧链分布在表团。

分子内部是疏水的非极性区,表面是强度不等的亲水极性区。

位于酶的凹入处的活性中心,其微环境都是非极性的。

6.答:米氏常数即Km值。

是当酶促反应速度达到最大反应速度—半时的底物浓度。

在酶学研究中的意义是:(1)Km值是酶的特征常数之一,它一般只与酶的性质有关,而与酶的浓度无关。

不同的酶其Km值不同。

(2)如果一个酶有几种底物时,则对每—种底物,各有一个特定的km值。

(3)Km 值可以近似地表示酶对底物亲和力的大小。

(4)可利用米氏方程求出任意底物浓度时的反应速度,或任何反应速度下的底物浓度。

第四章:糖类及糖代谢1.葡萄糖异生(glycogenolysis):非糖物质(如丙酮酸、乳酸、甘油、生糖氨基酸等)转变为葡萄糖的过程。

糖的有氧氧化(aerobic oxidation):在有氧条件下,葡萄糖或糖原氧化成水和二氧化碳的过程。

是糖氧化的主要方式。

酒精发酵(alcoholic fermentation):在无氧条件下,葡萄糖酵解形成乙醇的过程。

磷酸戊糖途径(pentose phosphate pathway):生物有机体某些组织以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成葡萄糖酸-6-磷酸,进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路。

1.答:(1)糖类物质是异氧生物的主要能源之一,糖在生物体内经一系列的降解而释放大量的能量,供生命活动的需要。

(2)糖类物质及其降解的中间产物,可以作为合成蛋白质、脂肪的碳架及机体其它碳素的来源。

(3)在细胞中糖类物质与蛋白质、核酸、脂肪等常以结合态存在,这些复合物分子具有许多特异而重要的生物功能。

(4)糖类物质还是生物体的重要组成成分。

2.答:(1)三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。

(2)糖代谢产生的碳骨架最终进入三羧酸循环氧化。

(3)脂肪分解产生的甘油可通过有氧氧化进入三羧酸循环氧化,脂肪酸经β-氧化产生乙酰CoA可进入三羧酸循环氧化。

(4)蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨后合成必需氨基酸。

所以,三羧酸循环是三大物质代谢共同通路。

4.答:乙醛酸循环是有机酸代谢循环,它存在于植物和微生物中,可分为五步反应,由于乙醛酸循环与三羧酸循环有一些共同的酶系和反应,将其看成是三羧酸循环的一个支路。

循环每一圈消耗2分子乙酰CoA,同时产生1分子琥珀酸。

琥珀酸产生后,可进入三羧酸循环代谢,或经糖异生途径转变为葡萄糖乙醛酸循环的意义:(1)乙酰CoA经乙醛酸循环可以和三羧酸循环相偶联,补充三羧酸循环中间产物的缺失。

(2)乙醛酸循环是微生物利用乙酸作为碳源的途径之一。

(3)乙醛酸循环是油料植物将脂肪转变为糖和氨基酸的途径。

6.答:糖酵解中产生的NADH+H+在无氧条件下通过生成酒精或乳酸被氧化成NAD+,在有氧条件下通过呼吸链再生NAD+。

再生的NAD+可继续使糖酵解中间物甘油醛-3-磷酸继续氧化,以保证糖酵解的延续。

7.答:糖分解代谢可按EMP-TCA途径进行,也可按磷酸戊糖途径,决定因素是能荷水平,能荷低时糖分解按EMP-TCA途径进行,能荷高时可按磷酸戊糖途径8. 答:核苷酸葡萄糖(NDPG)属于高能态,NDPG分子中葡萄糖基上的C1原子因其羟基被NDP二磷酸酯化而活化, NDPG是葡萄糖更为活泼的活化形式,因而,高能态的NDPG可容易地将其糖基供给许多双糖和多糖的生物合成,起着糖基供体的作用。

相关主题