物理化学10-1界面现象
§10.1 界面张力 §10.2 弯曲液面的附加压力及其后果 §10.3 固体表面
§10.4 液 - 固界面
§10.5 溶液表面
前言:
掌握: 界面, 表面, 分散度 自然界的物质有三种相态, 三种相态相互接触可 以产生五种界面。所谓界面即是:两相的接触面。表 面:与气体的接触面。 物质的存在状态: 界面类型
肥皂膜
l
dx
无摩擦、可自由活动
F
若用钢丝制成一框架,如上图。一边为可以自由活动的金属 丝,将此金属丝固定后,使框架沾上一层肥皂膜,若放松金属 丝,肥皂膜会自动收缩以减小表面积。 要使膜维持不变,需在金属丝上加一力F,其大小与金属丝 长度 l 成正比,比例系数 。因膜有两个表面,故有:
F 2 γ l (10.1.1a) 即 γ F 2l (10.1.1b)
Δ p 将总是一个正的值,它的方向是指向凹面曲率半径 的中心的。
pg
对于液珠(凸液面),
p p内 p外 pl pg
pl Δp
对于液体中气泡(凹液面),
pg
pl
p p内 p外 pg pl
如何推导出弯曲液面附加压力Δ p 与液面曲率半径的关系。 如左图,设有凸液面AB,球 心O,球半径 r ,球缺底面圆心 O1,底面半径 r1 ,将球缺底面圆 周上与圆周垂直的表面张力
正己烷 正辛醇 乙醇 乙醚 H2O NaCl LiCl Na2SiO3(水玻璃) FeO Al2O3 Ag Cu Pt
一般对于气液界面有:γ(金属键)> γ(离子键)> γ(极性键)> γ(非极性键)
固体分子间的相互作用力远远大于液体的, 所以固体物 质要比液体物质具有更高的表面张力。
表10.1.2 一些固态物质的表面张力 物 质 气 氛
液体内部分子对它的吸引力, 远远大于液面上蒸气分子对于它的 吸引力。使表面层分子受到指向液 体内部的合力。 因而液体表面的分子总是趋向 移往液体内部,力图缩小表面积。
所以液体表面如同一层绷紧了的富有弹性的橡皮膜。 这即是为什么小液滴总是呈球形,肥皂泡要用力吹才能变 大的原因:因为球形表面积最小,扩大表面积需要对系统 作功。
如何计算液体在毛细管中上升的高度?
毛细现象:附加压力与毛细管中液面 高度的关系 将一支半径一定的毛细管垂直插入 某液体中。若 角< 90° 说明液体能 润湿管壁。由于附加压力指时,液体将被压
入管内,直到上升液拄的静压力gh
与附加压力相等,达到平衡态为止。
水 – 正己烷 水 – 正辛烷 水 – 氯仿 水 – 四氯化碳 水 – 正辛醇
水 – 乙醚 水–苯 水 – 硝基苯 水–汞 苯–汞
②温度对界面张力的影响: 温度升高,物质体积膨胀,分子 间距离增加,相互作用减弱,界面张力下降。 极限情况: T→ Tc 时,γ→0。
气相中分子密度降低 T↑
液相中分子距离↑
解: 当不断向系统压入空 气时毛细管出口处将出现一 小气泡,且不断增大。若毛 细管足够细,管下端气泡将 呈球缺形,液面可视为球面 的一部分。随着小气泡的变 大,气泡的曲率半径将变小。 R1 > R2 < R3 当气泡的半径等于毛细管的半径时,气 泡的曲率半径最小(见左图),液面对 气体的附加压力达到最大。此后气泡若 再增大,气泡半径也将增大。而且气泡将 从液体内部逸出。
产生表面(界面)现象的原因是什么?
是由于当物质被高度分散时,界面的质量与体相相比 不可忽略,界面的作用很明显。
例 :
直径为 1cm的 球型小水滴
分成 1018个
直 径 10nm 的 圆球形小液滴
表面积: 3.1416cm
2
表面积相 差 106倍
总表面积 314.16m2
与一般体系相比,小颗粒的分散体系有很大的 表面积,它对系统性质的影响绝对不可忽略。 结论:对一定量的物质而言,分散度越高,其表面 积越大,表面效应越明显.
毛细管现象产生的原因
由于表面张力的存在,所以弯曲液面有附加压力,又由 于弯曲液面有附加压力,所以有毛细管现象。毛细管现象的 原因是由于有表面张力的存在。
用毛细血管现象解释农民锄地的好处.
自学: 例 10.2.1 用最大泡压法测量液体的表面张力的装置如图 10.2.4 所示: 将毛细管垂直插入液体中, 其深度为 h 。由上端通入气体, 在毛细管下端呈小气泡放出,小 气泡内的最大压力可由 U 形管压 力计测出(现也可用电子压力计 测出)。已知 300K 时,某液体 3 -3 的密度 = 1.6 10 kg · ,毛 m 细管的半径 r = 1mm ,毛细管插 入的深度 h = 0.01 m,小气泡的最大表压(气泡内气体压力与 大气压力之差)p最大 = 207 Pa。该液体在 300K 时的表面张力 为若干?
液体
水 乙醇 甲醇 CCl4 丙酮 甲苯 苯
③ 压力及其它因素对表面张力的的影响: 压力增加,使气相密度增加,减小表面分子受力不对称程 度;也使气体分子更多溶于液体,改变液相成分,这些因 素都使表面张力下降。 a.表面分子受力不对称的程度 ↓ p↑ b.气体分子可被表面吸附,改变液相 成分, γ ↓ γ↓
肥皂膜 l
dx
无摩擦、可自由活动
F
F γ 2l (10.1.1b)
中 即为表面张力
表面张力:引起液体表面收缩的单位长度上的力。单位N。 M-1
另一方面,当用外力F,使金属丝向下移动 dx ,皂膜面 积增大dA,则表面张力作可逆表面功:
肥皂膜 l
dx
无摩擦、可自由活动
F
δ' Wr' Fdx 2γ l dx γ dAs δWr' γ dAs
2π r1 γ r1 /r 2 γ Δp 2 π r1 r
10.2.2
此式即为拉普拉斯方程。表明弯曲液面附加压力与液 体表面张力成正比,与曲率半径成反比。
其中,曲率半径 r ,总取正值,Δ p 指向凹面中心, 总取正值。
对于液体中的气泡,(凹液面) 弯曲液面附加压力为: Δp = p内-p外 = pg - pl
§ 10.2 弯曲液面的附加压力及其后果
1. 弯曲液面的附加压力——Laplace方程
pg pl pl
一般情况下,液体表面是水平的, 水平液面下液体所受压力即为外界 压力,
而水中的气泡及小液滴,其表面是弯曲的。液面可能是凸 的,也可能是凹的。凸液面下的液体不但要受到外界压力,还 要受到弯曲液面的附加压力 p 。以下用图说明。
分解为水平分力与垂直分力,
其单位周长上垂直分力 cos 指向液体内部 , 为表面张力与垂直分力方向的夹角。因 为球缺底部圆周长 2 r1 , 得垂直方向在圆周上合力为:
F 2π r1 γ cosα
因为, cos = r1/ r ,球缺底面积为r12,所以弯曲液面对单 位水平面上附加压力为:
γ↓ (有例外)
下表(表10.1.4) 给出一些液体在不同温度下的表面张力
0 75.64 24.05 24.5 26.2 30.74 31.6 20 72.75 22.27 22.6 26.8 23.7 28.43 28.9 40 69.58 20.60 20.9 24.3 21.2 26.13 26.3 60 66.18 19.01 21.9 18.6 23.81 23.7 80 62.61 16.2 21.53 21.3 100 58.85 15.7 19.39
3)压力
4)分散度
①与物质的本性有关:分子间相互作用力越 大,γ越 大。
表10.1.1 某些液态物质的表面张力
物 质 t / °C
20 20 20 25 20 803 614 1000 1427 2080 1100 1083 1773.5
/ mN m-1
18.4 21.8 22.3 26.43 72.75 113.8 137.8 250 582 700 878.5 1300 1800
Cu蒸气 真空 真空 真空
t /°C
1050 750 215 5.5 0. 25 1850 20 -196
/mNm-1
1670 1140 685 527 12010 1000 905 4500 1030
Cu Ag Sn 苯 冰 氧化镁 氧化铝 云母 石 英 (1010 晶
(10.1.5)
m 也称为表面吉布斯函数。单位 J ·
等于系统增加单位面积时,吉布斯函数的增加,所以, -2
表面张力、单位面积的表面功、单位面积的表面吉布斯 函数三者的数值 、量纲等同,但它们有不同的物理意义,是 从不同角度说明同一问题。
2.界面张力及其影响因素
界面张力取决于界面的性质,能影响物质性质的因素,都 能影响界面张力。 1)物质的本性 2)温度
面)
两种互不混溶的液体形成液-液界面时,界面层分子所处 力场取决于两种液体。所以不同液-液对界面张力不同。
表10.1.3 20°C 某些液-液界面张力(两液体已相互达到饱和) 界 面
/mN m-1
51.1 50.8 32.8 45 8.5
界
面
/mN m-1
10.7 35.0 25.66 375. 357.
Δp pg
我们总是定义:
Δ p p内 p外
它总是一个正值,方向指向凹面曲率 半径中心。
pl
对于空气中的肥皂泡,因其有内外两个气-液界面,所以:
4γ Δp r
Δp pin pout 2γ 2γ 4γ ( pg,i pl ) ( pl pg ,o ) r r r
物质的分散度用比表面积 as 表示,它的定义为 物质的 表面积 As 与质量 m 的比:
As as m
10.0.1
单位:m · kg
2
-1