第五节数学归纳法数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.[小题体验]1.(教材习题改编)在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于________.答案:32.(教材习题改编)用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1)”.当验证n =1时,上式左端计算所得为________.答案:1+a +a 21.数学归纳法证题时初始值n 0不一定是1.2.推证n =k +1时一定要用上n =k 时的假设,否则不是数学归纳法.3.解“归纳——猜想——证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础.否则将会做大量无用功.[小题纠偏]判断正误(请在括号中打“√”或“×”).(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( ) (2)所有与正整数有关的数学命题都必须用数学归纳法证明.( ) (3)用数学归纳法证明问题时,归纳假设可以不用.( )(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )(5)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )答案:(1)× (2)× (3)× (4)× (5)√考点一 用数学归纳法证明等式(基础送分型考点——自主练透)[题组练透]1.(易错题)用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1)(n ∈N *). 证明:(1)当n =1时, 左边=12×1×(2×1+2)=18,右边=14(1+1)=18,左边=右边,所以等式成立. (2)假设n =k (k ∈N *)时等式成立,即有 12×4+14×6+16×8+…+12k (2k +2)=k 4(k +1), 则当n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2]=k 4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2) =k +14(k +2)=k +14(k +1+1).所以当n =k +1时,等式也成立. 由(1)(2)可知,对于一切n ∈N *等式都成立.2.设f (n )=1+12+13+…+1n (n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).证明:(1)当n =2时,左边=f (1)=1,右边=2⎝⎛⎭⎫1+12-1=1,左边=右边,等式成立. (2)假设n =k (k ≥2,k ∈N *)时,结论成立,即 f (1)+f (2)+…+f (k -1)=k [f (k )-1], 那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k =(k +1)⎣⎡⎦⎤f (k +1)-1k +1-k=(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1], ∴当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).[谨记通法]用数学归纳法证明等式应注意的2个问题(1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值n 0的值.(2)由n =k 到n =k +1时,除考虑等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.考点二 用数学归纳法证明不等式(重点保分型考点——师生共研)[典例引领]已知函数f (x )=x -32x 2,设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1.证明:(1)当n =1时,0<a 1<12,显然结论成立.因为当x ∈⎝⎛⎭⎫0,12时,0<f (x )≤16, 所以0<a 2=f (a 1)≤16<13.故n =2时,原不等式也成立. (2)假设当n =k (k ≥2,k ∈N *)时, 不等式0<a k <1k +1成立. 因为f (x )=x -32x 2的对称轴为直线x =13,所以当x ∈⎝⎛⎦⎤0,13时,f (x )为增函数. 所以由0<a k <1k +1≤13, 得0<f (a k )<f ⎝⎛⎭⎫1k +1.于是,0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2. 所以当n =k +1时,原不等式也成立. 根据(1)(2),知对任何n ∈N *,不等式a n <1n +1成立. [由题悟法]用数学归纳法证明不等式应注意的2个问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等证明.[即时应用](2017·浙江新高考联盟)数列{a n }满足a 1=1,a n +1=⎝⎛⎭⎫1+1n 2+n a n (n ∈N *).证明:(1)a n +1>a n ; (2)2n n +1≤a n ≤e n n +1. 证明:(1)用数学归纳法证明a n >0. ①当n =1时,a 1=1>0;②假设当n =k (k ≥1,k ∈N *)时,a k >0, 则当n =k +1时,a k +1=⎝⎛⎭⎫1+1k 2+k a k >0.综上可知,当n ∈N *时,a n >0. 所以a n +1=⎝⎛⎭⎫1+1n 2+n a n >a n .(2)用数学归纳法证明a n ≥2nn +1. ①当n =1时,a 1=1≥21+1; ②假设当n =k (k ≥1,k ∈N *)时,a k ≥2kk +1,则当n =k +1时,a k +1=⎝⎛⎭⎫1+1k 2+k a k ≥2(k 2+k +1)(k +1)2≥2(k +1)k +2.综上可知,当n ∈N *时,a n ≥2nn +1.由a n +1=⎝⎛⎭⎫1+1n 2+n a n ,得ln a n +1-ln a n =ln ⎝⎛⎭⎫1+1n 2+n ≤1n 2+n =1n -1n +1,所以ln a n ≤1-1n ≤1-ln ⎝⎛⎭⎫1+1n =ln e n n +1. 所以a n ≤e nn +1. 综上可知,当n ∈N *时,2n n +1≤a n ≤e nn +1.考点三归纳—猜想—证明(重点保分型考点——师生共研)[典例引领]已知数列{a n}的前n项和S n满足:S n=a n2+1a n-1,且a n>0,n∈N*.(1)求a1,a2,a3,并猜想{a n}的通项公式;(2)证明通项公式的正确性.解:(1)当n=1时,由已知得a1=a12+1a1-1,a21+2a1-2=0.∴a1=3-1(a1>0).当n=2时,由已知得a1+a2=a22+1a2-1,将a1=3-1代入并整理得a22+23a2-2=0.∴a2=5-3(a2>0).同理可得a3=7- 5.猜想a n=2n+1-2n-1(n∈N*).(2)证明:①由(1)知,当n=1,2,3时,通项公式成立.②假设当n=k(k≥3,k∈N*)时,通项公式成立,即a k=2k+1-2k-1.由于a k+1=S k+1-S k=a k+12+1a k+1-a k2-1a k,将a k=2k+1-2k-1代入上式,整理得a2k+1+22k+1a k+1-2=0,∴a k+1=2k+3-2k+1,即n=k+1时通项公式成立.由①②可知对所有n∈N*,a n=2n+1-2n-1都成立.[由题悟法]“归纳—猜想—证明”的3步曲(1)计算:根据条件,计算若干项.(2)归纳猜想:通过观察、分析、综合、联想,猜想出一般结论.(3)证明:用数学归纳法证明.[即时应用](2018·常德模拟)设a>0,f(x)=axa+x,令a1=1,a n+1=f(a n),n∈N*.(1)写出a2,a3,a4的值,并猜想数列{a n}的通项公式;(2)用数学归纳法证明你的结论.解:(1)∵a 1=1, ∴a 2=f (a 1)=f (1)=a 1+a; a 3=f (a 2)=a ·a 1+a a +a 1+a =a2+a ;a 4=f (a 3)=a ·a 2+a a +a 2+a =a3+a. 猜想a n =a(n -1)+a(n ∈N *).(2)证明:①易知,n =1时,猜想正确. ②假设n =k (k ≥1且k ∈N *)时猜想正确, 即a k =a(k -1)+a,则a k +1=f (a k )=a ·a ka +a k=a ·a (k -1)+a a +a(k -1)+a=a(k -1)+a +1=a[(k +1)-1]+a.这说明,n =k +1时猜想正确. 由①②知,对于任何n ∈N *, 都有a n =a(n -1)+a.一保高考,全练题型做到高考达标1.若f (n )=1+12+13+…+16n -1(n ∈N *),则f (1)为( )A .1B.15C .1+12+13+14+15D .非以上答案解析:选C 等式右边的分母是从1开始的连续的自然数,且最大分母为6n -1,则当n =1时,最大分母为5,故选C.2.利用数学归纳法证明“(n +1)(n +2) …(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1解析:选B 当n =k (k ∈N *)时, 左式为(k +1)(k +2) ·…·(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1), 则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1).3.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,利用归纳法假设证明n =k +1时,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3解析:选A 假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只须将(k +3)3展开,让其出现k 3即可.4.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( ) A .n +1 B .2nC.n 2+n +22D .n 2+n +1解析:选C 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域.5.用数学归纳法证明1+2+3+…+n 2=n 4+ n 22,则当n =k +1时左端应在n =k 的基础上加上的项为______________.解析:当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2, 则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2. 答案:(k 2+1)+(k 2+2)+…+(k +1)26.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有:(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =________.解析:由(S 1-1)2=S 21得,S 1=12; 由(S 2-1)2=(S 2-S 1)S 2得,S 2=23;由(S 3-1)2=(S 3-S 2)S 3得,S 3=34.猜想S n =n n +1. 答案:n n +17.用数学归纳法证明等式12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2.证明:(1)当n =1时,左边=12=1, 右边=(-1)0×1×(1+1)2=1,左边=右边,原等式成立. (2)假设n =k (k ∈N *)时,等式成立,即有12-22+32-42+…+(-1)k -1·k 2=(-1)k-1·k (k +1)2. 那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2 =(-1)k-1k (k +1)2+(-1)k ·(k +1)2 =(-1)k ·k +12[-k +2(k +1)]=(-1)k (k +1)(k +2)2.∴n =k +1时,等式也成立,由(1)(2)知对任意n ∈N *有12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2.8.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n1-4a 2n(n ∈N *),且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. 解:(1)由题意得a 1=1,b 1=-1, b 2=-11-4×1=13,a 2=1×13=13,∴P 2⎝⎛⎭⎫13,13.∴直线l 的方程为y +113+1=x -113-1,即2x +y =1.(2)证明:①当n =1时, 2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ≥1且k ∈N *)时, 2a k +b k =1成立.则2a k +1+b k +1=2a k ·b k +1+b k +1 =b k 1-4a 2k·(2a k+1)=b k1-2a k =1-2a k 1-2a k =1, ∴当n =k +1时,2a k +1+b k +1=1也成立.由①②知,对于n ∈N *,都有2a n +b n =1,即点P n 在直线l 上. 9.(2019·宁波模拟)已知三个数列{a n },{b n },{c n },满足a 1=-1110,b 1=1,a n +1=|a n -1|+a 2n -2a n +52,b n +1=2b n +1,c n =ab n ,n ∈N *.(1)证明:当n ≥2时,a n >1;(2)是否存在集合[a ,b ],使得c n ∈[a ,b ]对任意n ∈N *成立,若存在,求出b -a 的最小值;若不存在,请说明理由.解:(1)证明:下面用数学归纳法证明:当n ≥2时,a n >1. ①当n =2时,由a 1=-1110,a n +1=|a n -1|+a 2n -2a n +52,得a 2=52,显然成立;②假设当n =k 时命题成立,即a k >1. 则当n =k +1时,a k +1=a k -1+a 2k -2a k +52,于是a k +1-1=a k -3+a 2k -2a k +52.因为()a 2k -2a k +52-(3-a k )2=4(a k -1)>0.所以a k +1>1,即当n =k +1时命题成立. 由①②可知,当n ≥2时,a n >1.(2)由b n +1=2b n +1,b 1=1,得b n +1+1=2(b n +1), 所以数列{b n +1}是首项为b 1+1=2,公比为2的等比数列, 所以b n +1=2n ,从而b n =2n -1. 由(1)知,当n ≥2时,a n >1,所以,当n ≥2时,a n +1-a n =a 2n -2a n +5-(1+a n )2.因为(a 2n -2a n +5)2-(1+a n )2=4(1-a n )<0,所以a n +1<a n .综上,当n ≥2时,1<a n +1<a n .由a 1=-1110,a n +1=f (a n )(n ∈N *),c n =ab n ,得c 1=a 1=-1110,a 2=52,a 3=2, 所以c 1<1,c 2=a 3=2>c 3> (1)从而存在集合[a ,b ],使得c n ∈[a ,b ]对任意n ∈N *成立. 当b =c 2=a 3=2,a =c 1=-1110时,b -a 的最小值为c 2-c 1=3110. 二上台阶,自主选做志在冲刺名校1.设等差数列{a n }的公差d >0,且a 1>0.记T n =1a 1a 2+1a 2a 3+…+1a n a n +1. (1)用a 1,d 分别表示T 1,T 2,T 3,并猜想T n ; (2)用数学归纳法证明你的猜想. 解:(1)T 1=1a 1a 2=1a 1(a 1+d ); T 2=1a 1a 2+1a 2a 3=⎝⎛⎭⎫1a 1-1a 2+1a 2-1a 3×1d=⎝⎛⎭⎫1a 1-1a 1+2d ×1d =2a 1(a 1+2d ); T 3=1a 1a 2+1a 2a 3+1a 3a 4=⎝⎛⎭⎫1a 1-1a 2+1a 2-1a 3+1a 3-1a 4×1d =⎝⎛⎭⎫1a 1-1a 1+3d ×1d =3a 1(a 1+3d ). 由此可猜想:T n =na 1(a 1+nd ).(2)证明:①当n =1时,T 1=1a 1(a 1+d )结论成立.②假设当n =k (k ∈N *)时结论成立,即T k =ka 1(a 1+kd ).则当n =k +1时,T k +1=T k +1a k +1a k +2=k a 1(a 1+kd )+1(a 1+kd )[a 1+(k +1)d ]=(k +1)(a 1+kd )a 1(a 1+kd )[a 1+(k +1)d ]=k +1a 1[a 1+(k +1)d ].即n =k +1时,结论成立. 由①②可知,T n =na 1(a 1+nd )对于一切n ∈N *恒成立.2.(2018·浙江名校协作体联考)已知无穷数列{a n }的首项a 1=12,1a n +1=12⎝⎛⎭⎫a n +1a n ,n ∈N *.(1)证明:0<a n <1;(2)记b n =(a n -a n +1)2a n a n +1,T n 为数列{b n }的前n 项和,证明:对任意正整数n ,T n <310.证明:(1)①当n =1时显然成立;②假设当n =k 时不等式成立,即0<a k <1. 则当n =k +1时,1a k +1=12⎝⎛⎭⎫a k +1a k >12×2a k 1a k=1, 所以0<a k +1<1,即当n =k +1时不等式也成立. 综上可知,0<a n <1对任意n ∈N *成立. (2)因为a n +1a n =2a 2n +1>1,即a n +1>a n , 所以数列{a n }为递增数列.又1a n -1a n +1=1a n -12⎝⎛⎭⎫a n +1a n =12⎝⎛⎭⎫1a n -a n , 易知⎩⎨⎧⎭⎬⎫1a n-a n 为递减数列,所以⎩⎨⎧⎭⎬⎫1a n -1a n +1也为递减数列.所以当n ≥2时,1a n -1a n +1≤12⎝⎛⎭⎫1a 2-a 2=12⎝⎛⎭⎫54-45=940, 所以当n ≥2时,b n =(a n -a n +1)2a n a n +1=(a n +1-a n )⎝⎛⎭⎫1a n -1a n +1≤940(a n +1-a n ).则当n =1时,T 1=b 1=940<310,成立; 当n ≥2时,T n =b 1+b 2+…+b n ≤940+940[(a 3-a 2)+(a 4-a 3)+…+(a n +1-a n )]=940+940(a n +1-a 2)<940+940⎝⎛⎭⎫1-45=27100<310.综上,对任意正整数n,T n<3 10.命题点一数列的概念及表示1.(2018·全国卷Ⅰ)记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=________. 解析:∵S n=2a n+1,∴当n≥2时,S n-1=2a n-1+1,∴a n=S n-S n-1=2a n-2a n-1,即a n=2a n-1.当n=1时,由a1=S1=2a1+1,得a1=-1.∴数列{a n}是首项a1为-1,公比q为2的等比数列,∴S n=a1(1-q n)1-q=-1(1-2n)1-2=1-2n,∴S6=1-26=-63. 答案:-632.(2014·全国卷Ⅱ)数列{a n}满足a n+1=11-a n,a8=2,则a1=________.解析:将a8=2代入a n+1=11-a n,可求得a7=12;再将a7=12代入a n+1=11-a n,可求得a6=-1;再将a6=-1代入a n+1=11-a n,可求得a5=2;由此可以推出数列{a n}是一个周期数列,且周期为3,所以a1=a7=1 2.答案:1 2命题点二等差数列与等比数列1.(2018·全国卷Ⅰ)记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=() A.-12 B.-10C.10 D.12解析:选B设等差数列{a n}的公差为d,由3S3=S2+S4,得3(3a1+3d)=2a1+d+4a1+6d,即3a1+2d=0.将a1=2代入上式,解得d=-3,故a5=a1+(5-1)d=2+4×(-3)=-10.2.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A.1盏B.3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3.3.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.4.(2018·北京高考)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为________.解析:法一:设数列{a n }的公差为d .∵a 2+a 5=36,∴(a 1+d )+(a 1+4d )=2a 1+5d =36.∵a 1=3,∴d =6,∴a n =6n -3.法二:设数列{a n }的公差为d ,∵a 2+a 5=a 1+a 6=36,a 1=3,∴a 6=33,∴d =a 6-a 15=6,∴a n =6n -3.答案:a n =6n -35.(2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12, ∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1, ∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432, ∴S 5=121. 答案:1 1216.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. 解:(1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16, 所以当n =4时,S n 取得最小值,最小值为-16. 7.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n-1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63,得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =1-2n 1-2=2n-1.由S m =63,得2m =64,解得m =6. 综上,m =6.8.(2018·浙江高考)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.解:(1)由a 4+2是a 3,a 5的等差中项, 得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28, 解得a 4=8.由a 3+a 5=20,得8⎝⎛⎭⎫q +1q =20, 解得q =2或q =12.因为q >1,所以q =2.(2)设c n =(b n +1-b n )a n ,数列{c n }的前n 项和为S n .由c n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,解得c n =4n -1.由(1)可得a n =2n -1,所以b n +1-b n =(4n -1)×⎝⎛⎭⎫12n -1, 故b n -b n -1=(4n -5)×⎝⎛⎭⎫12n -2,n ≥2,b n -b 1=(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)=(4n -5)×⎝⎛⎭⎫12n -2+(4n -9)×⎝⎛⎭⎫12n -3+…+7×12+3. 设T n =3+7×12+11×⎝⎛⎭⎫122+…+(4n -5)×⎝⎛⎭⎫12n -2,n ≥2, 则12T n =3×12+7×⎝⎛⎭⎫122+…+(4n -9)×⎝⎛⎭⎫12n -2+(4n -5)×⎝⎛⎭⎫12n -1, 两式相减,得12T n =3+4×12+4×⎝⎛⎭⎫122+…+4×⎝⎛⎭⎫12n -2-(4n -5)×⎝⎛⎭⎫12n -1, 所以T n =14-(4n +3)×⎝⎛⎭⎫12n -2,n ≥2. 又b 1=1,所以b n =15-(4n +3)×⎝⎛⎭⎫12n -2. 命题点三 数列的综合应用1.(2018·浙江高考)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4解析:选B 法一:构造不等式ln x ≤x -1(x >0), 则a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1, 所以a 4=a 1·q 3≤-1.由a 1>1,得q <0.若q ≤-1,则ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4=a 1(1+q )·(1+q 2)≤0. 又a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1, 所以ln(a 1+a 2+a 3)>0,矛盾. 因此-1<q <0.所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0, 所以a 1>a 3,a 2<a 4.法二:因为e x ≥x +1,a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),所以e a 1+a 2+a 3+a 4=a 1+a 2+a 3≥a 1+a 2+a 3+a 4+1,则a 4≤-1,又a 1>1,所以等比数列的公比q <0.若q ≤-1,则a 1+a 2+a 3+a 4=a 1(1+q )(1+q 2)≤0,而a 1+a 2+a 3≥a 1>1,所以ln(a 1+a 2+a 3)>0,与ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4≤0矛盾,所以-1<q <0,所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0,所以a 1>a 3,a 2<a 4.2.(2018·江苏高考)已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n +1成立的n 的最小值为________.解析:所有的正奇数和2n (n ∈N *)按照从小到大的顺序排列构成{a n },在数列{a n }中,25前面有16个正奇数,即a 21=25,a 38=26.当n =1时,S 1=1<12a 2=24,不符合题意;当n =2时,S 2=3<12a 3=36,不符合题意;当n =3时,S 3=6<12a 4=48,不符合题意;当n =4时,S 4=10<12a 5=60,不符合题意;……;当n =26时,S 26=21×(1+41)2+2×(1-25)1-2=441+62=503<12a 27=516,不符合题意;当n =27时,S 27=22×(1+43)2+2×(1-25)1-2=484+62=546>12a 28=540,符合题意.故使得S n >12a n +1成立的n 的最小值为27.答案:273.(2018·天津高考)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *), ①求T n ;②证明∑k =1n(T k +b k +2)b k (k +1)(k +2)=2n +2n +2-2(n ∈N *).解:(1)设等比数列{a n }的公比为q . 由a 1=1,a 3=a 2+2,可得q 2-q -2=0. 由q >0,可得q =2,故a n =2n -1. 设等差数列{b n }的公差为d . 由a 4=b 3+b 5,可得b 1+3d =4.① 由a 5=b 4+2b 6,可得3b 1+13d =16.② 联立①②解得b 1=1,d =1,故b n =n . 所以数列{a n }的通项公式为a n =2n -1, 数列{b n }的通项公式为b n =n . (2)①由(1),有S n =1-2n1-2=2n -1,所以T n =∑k =1n(2k-1)=∑k =1n2k-n =2(1-2n )1-2-n=2n +1-n -2.②证明:因为(T k +b k +2)b k (k +1)(k +2)=(2k +1-k -2+k +2)k(k +1)(k +2)=k ·2k +1(k +1)(k +2)=2k +2k +2-2k +1k +1, 所以∑k =1n(T k +b k +2)b k (k +1)(k +2)=⎝⎛⎭⎫233-222+⎝⎛⎭⎫244-233+…+⎝ ⎛⎭⎪⎫2n +2n +2-2n +1n +1=2n +2n +2-2. 4.(2018·江苏高考)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q =2,若|a n -b n |≤b 1对n =1,2,3,4均成立,求d 的取值范围; (2)若a 1=b 1>0,m ∈N *,q ∈(1,m2 ],证明:存在d ∈R ,使得|a n -b n |≤b 1对n =2,3,…,m +1均成立,并求d 的取值范围(用b 1,m ,q 表示).解:(1)由条件知a n =(n -1)d ,b n =2n -1. 因为|a n -b n |≤b 1对n =1,2,3,4均成立, 即|(n -1)d -2n -1|≤1对n =1,2,3,4均成立, 所以1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9, 解得73≤d ≤52.所以d 的取值范围为⎣⎡⎦⎤73,52.(2)由条件知a n =b 1+(n -1)d ,b n =b 1q n -1.若存在d ,使得|a n -b n |≤b 1(n =2,3,…,m +1)成立, 即|b 1+(n -1)d -b 1q n -1|≤b 1(n =2,3,…,m +1), 即当n =2,3,…,m +1时,d 满足q n -1-2n -1b 1≤d ≤q n -1n -1b 1.因为q ∈(1,m2],则1<q n -1≤q m ≤2,从而q n -1-2n -1b 1≤0,q n -1n -1b 1>0,对n =2,3,…,m +1均成立.因此,取d =0时,|a n -b n |≤b 1对n =2,3,…,m +1均成立.下面讨论数列⎩⎨⎧⎭⎬⎫q n -1-2n -1的最大值和数列⎩⎨⎧⎭⎬⎫q n -1n -1的最小值(n =2,3,…,m +1). ①当2≤n ≤m 时,q n -2n -q n -1-2n -1=nq n -q n -nq n -1+2n (n -1) =n (q n -q n -1)-q n +2n (n -1).当1<q ≤21m 时,有q n ≤q m ≤2,从而n (q n -q n -1)-q n +2>0.因此,当2≤n ≤m +1时,数列⎩⎨⎧⎭⎬⎫q n -1-2n -1单调递增, 故数列⎩⎨⎧⎭⎬⎫q n -1-2n -1的最大值为q m -2m . ②设f (x )=2x (1-x ),当x >0时,f ′(x )=(ln 2-1-x ln 2)2x <0, 所以f (x )单调递减,从而f (x )<f (0)=1.当2≤n ≤m 时,q n n qn -1n -1=q (n -1)n ≤21n ⎝⎛⎭⎫1-1n =f ⎝⎛⎭⎫1n <1,因此,当2≤n ≤m +1时,数列⎩⎨⎧⎭⎬⎫q n -1n -1单调递减, 故数列⎩⎨⎧⎭⎬⎫q n -1n -1的最小值为q mm . 因此d 的取值范围为⎣⎡⎦⎤b 1(q m-2)m ,b 1q m m . 命题点四 数学归纳法1.(2017·浙江高考)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时, (1)0<x n +1<x n ; (2)2x n +1-x n ≤x n x n +12; (3)12n -1≤x n ≤12n -2. 证明:(1)用数学归纳法证明:x n >0. 当n =1时,x 1=1>0.假设n =k (k ≥1,k ∈N *)时,x k >0, 那么n =k +1时,若x k +1≤0,则0<x k =x k +1+ln(1+x k +1)≤0,矛盾,故x k +1>0. 因此x n >0(n ∈N *).所以x n =x n +1+ln(1+x n +1)>x n +1.因此0<x n+1<x n(n∈N*).(2)由x n=x n+1+ln(1+x n+1)得,x n x n+1-4x n+1+2x n=x2n+1-2x n+1+(x n+1+2)·ln(1+x n+1).记函数f(x)=x2-2x+(x+2)ln(1+x)(x≥0),f′(x)=2x2+xx+1+ln(1+x)>0(x>0),所以函数f(x)在[0,+∞)上单调递增,所以f(x)≥f(0)=0,因此x2n+1-2x n+1+(x n+1+2)ln(1+x n+1)=f(x n+1)≥0,故2x n+1-x n≤x n x n+12(n∈N*).(3)因为x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,所以x n≥12n-1.由x n x n+12≥2x n+1-x n得1x n+1-12≥2⎝⎛⎭⎫1x n-12>0,所以1x n-12≥2⎝⎛⎭⎫1x n-1-12≥…≥2n-1⎝⎛⎭⎫1x1-12=2n-2,故x n≤12n-2.综上,12n-1≤x n≤12n-2(n∈N*).2.(2018·江苏高考)设n∈N*,对1,2,…,n的一个排列i1i2…i n,如果当s<t时,有i s >i t,则称(i s,i t)是排列i1i2…i n的一个逆序,排列i1i2…i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).解:(1)记τ(abc)为排列abc的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3,所以f3(0)=1,f3(1)=f3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此f4(2)=f3(2)+f3(1)+f3(0)=5.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以f n(1)=n-1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)-f n-1(2)]+[f n-1(2)-f n-2(2)]+…+[f5(2)-f4(2)]+f4(2)=(n-1)+(n-2)+…+4+f4(2)=n2-n-22,因此,当n≥5时,f n(2)=n2-n-22.。