2018年安徽省合肥一中高考数学最后一卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x||x−3|<2x},B={x|−4<x<3},则(∁R A)∩B=()A.(−4, 1]B.[−3, 3)C.[−3, 1]D.(−4, 3)【答案】A【考点】交、并、补集的混合运算【解析】求出集合A,B,从而求出C U A={x|x≤1},由此能求出(C R A)∩B.【解答】∵集合A={x||x−3|<2x}={x|x>1},B={x|−4<x<3},∴C U A={x|x≤1},∴(C R A)∩B={x|−4<x≤1}=(−4, 1].2. 已知i是虚数单位,若z=2+i,则zz的虚部是()A.4 5iB.45C.−45i D.−45【答案】B【考点】复数的运算【解析】由已知可得z,代入zz,利用复数代数形式的乘除运算化简得答案.【解答】∵z=2+i,∴zz =2+i2−i=(2+i)2(2−i)(2+i)=35+45i,∴zz 的虚部为45.3. 已知w>0,函数f(x)=cos(wx+π3)在(π3,π2)上单调递增,则w的取值范围是()A.(23,103) B.[23,103] C.[2,103] D.[2,53]【答案】C【考点】余弦函数的单调性【解析】利用余弦函数的单调性建立不等式关系求解即可.【解答】解:函数f(x)=cos(wx+π3)在(π3,π2)上单调递增,则{π3ω+π3≥2kπ−ππ2ω+π3≤2kπ,k ∈Z .解得:{ω≥6k −4ω≤4k −23,k ∈Z . ∵ ω>0,∴ 当k =1,可得2≤ω≤103.故选C .4. 《九章算术》之后,人们学会了用等差数列的知识来解决问题,《张丘建算经》卷上有叙述为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),如图是源于其思想的一个程序框图,如果输出的S 是60,则输入的x 是( )A.4B.3C.2D.1 【答案】 C【考点】 程序框图 【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【解答】第一次执行循环体后,n =1,S =x ,不满足退出循环的条件; 第二次执行循环体后,i =2,S =2x ,不满足退出循环的条件; 第三次执行循环体后,i =3,S =3x ,不满足退出循环的条件; 第四次执行循环体后,i =4,S =4x ,不满足退出循环的条件; …第29次执行循环体后,i =29,S =29x ,不满足退出循环的条件; 第30次执行循环体后,i =30,S =30x ,满足退出循环的条件; 故输出S =30x =60 ∴ x =2,5. 已知α,β分别满足α⋅e α=e 2,β(lnβ−2)=e 4,则αβ的值为( ) A.e B.e 2 C.e 3 D.e 4 【答案】 D【考点】函数与方程的综合运用【解析】对等式两边取自然对数,再由f(x)=x+lnx,求导,判断单调性,运用对数的运算性质,可得所求值.【解答】α⋅eα=e2,可得α+lnα=2,β(lnβ−2)=e4,可得lnβ+ln(lnβ−2)=4,即有lnβ−2+ln(lnβ−2)=2,可得α+lnα=lnβ−2+ln(lnβ−2),由f(x)=x+lnx的导数为1+1x>0,可得f(x)在x>0递增,可得α=lnβ−2,即为2−lnα=lnβ−2,即lnα+lnβ=4,可得ln(αβ)=4,可得αβ=e4,6. 某空间凸多面体的三视图如图所示,其中俯视图和侧(左)视图中的正方形的边长为1,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为()A.2+3√22B.72+3√22C.3+2√2D.2+√2【答案】C【考点】由三视图求体积【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【解答】由题意可知几何体的直观图如图:左侧是放倒的三棱柱,右侧是三棱锥,俯视图和侧(左)视图中的正方形的边长为1,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为:1×√2+2×12×1×1+1×1+12×1×1+12×1×√2+1 2×1×√2+12×1×1=3+2√2.7. △ABC中,A,B,C的对边分别为a,b,c.已知c2=2b2−2a2,2sin2A+B2=1+ cos2C,则sin(B−A)的值为________【答案】√34【考点】三角函数的恒等变换及化简求值【解析】利用二倍角和正弦定理,化简可得答案.【解答】∵由2sin2A+B2=1+cos2C,得cos2C=2sin2A+B2−1=1−cos(A+B)−1=−cos(π−C)=cosC,即2cos2C−cosC−1=0,∴得(cosC−1)(2cosC+1)=0,∴则cosC=1(舍),或cosC=−12,∵0<C<π∴C=2π3,∵c2=2b2−2a2,由正弦定理可得:2(sin2B−sin2A)=sin2C=34,∴sin2B−sin2A=38,推导可得:sin(B+A)sin(B−A)=38,即sinCsin(B−A)=38,∴sin(B−A)=√34.8. 某班级有男生32人,女生20人,现选举4名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为ξ,则ξ的数学期望为()A.16 13B.2013C.3213D.4013【答案】C【考点】离散型随机变量的期望与方差【解析】由题意知随机变量ξ的可能取值是0,1,2,3,4,计算对应的概率值,求出ξ的数学期望值.【解答】由题意知,随机变量ξ的可能取值是0,1,2,3,4,且P(ξ=0)=C 320∗C204C 524=C 204C 524,P(ξ=1)=C 321∗C203C 524,P(ξ=2)=C 322∗C202C 524,P(ξ=3)=C 323∗C201C 524,P(ξ=4)=C 324∗C200C 524=C 324C 524;∴ ξ的数学期望为 E(ξ)=0×C 204C 524+1×C 321∗C203C 524+2×C 322∗C202C 524+3×C 323∗C201C 524+4×C 324C 524 =1C 524(32×20×19×3+32×31×19×10+32×31×30×10+32×31×29×5) =3213.9. 已知函数y =f(x)单调递增,函数y =f(x −2)的图象关于点(2, 0)对称,实数x ,y 满足不等式f(x 2−2x)+f(−2y −y 2)≤0,则z =x 2+y 2−6x +4y +14的最小值为( ) A.32B.23C.3√22D.√22【答案】 A【考点】抽象函数及其应用 简单线性规划 【解析】根据题意,分析可得函数f(x)为奇函数,结合函数的单调性分析可得f(x 2−2x)≤f(2y +y 2)⇒x 2−2x ≤y 2+2y ,变形可得:(x +y)(x −y −2)≤0,即{x +y ≤0x −y −2≥0 或{x +y ≥0x −y −2≤0 ,由二元一次不等式的几何意义分析其可行域,又由z =x 2+y 2−6x +4y +14=(x −3)2+(y +2)2+1,设m =(x −3)2+(y +2)2,其几何意义为可行域中任意一点到点(3, −2)距离的平方,求出m 的最小值,计算即可得答案. 【解答】根据题意,因为函数y =f(x −2)的图象关于点(2, 0) 对称,所以函数y =f(x)的图象关于点(0, 0)对称, 即函数f(x)是定义在R 上的奇函数,则f(x 2−2x)+f(−2y −y 2)≤0⇒f(x 2−2x)≤−f(−2y −y 2) ⇒f(x 2−2x)≤f(2y +y 2),又由函数y =f(x)单调递增,则f(x 2−2x)≤f(2y +y 2) ⇒x 2−2x ≤y 2+2y ,变形可得:(x +y)(x −y −2)≤0, 即{x +y ≤0x −y −2≥0 或{x +y ≥0x −y −2≤0, 所以可得其可行域,如图所示:z =x 2+y 2−6x +4y +14=(x −3)2+(y +2)2+1,设m =(x −3)2+(y +2)2,其几何意义为可行域中任意一点到点(3, −2)距离的平方,分析可得:m的最小值为(√1+1)2=12,则z=x2+y2−6x+4y+14的最小值为12+1=32;故选:A.10. 一个正四面体的四个面上分别标有数字1,2,3,4.掷这个四面体四次,令第i次得到的数为a i,若存在正整数k使得∑=i=1k ai 4的概率p=mn,其中m,n是互质的正整数,则log5m−log4n的值为()A.1B.−1C.2D.−2【答案】B【考点】模拟方法估计概率【解析】当k=1时,∑=i=1k ai 4的概率p1=14,当k=2时,∑=i=1k ai4的概率p2=34×4=316,当k=3时,∑=i=1k ai 4的概率p=34×4×4=364,当k=4时,∑=i=1k ai4的概率p=14×4×4×4=1256,从而求出∑=i=1k ai4的概率p=mn=125256,由此能求出log5m−log4n的值.【解答】正四面体的四个面上分别标有数字1,2,3,4.掷这个四面体四次,令第i次得到的数为a i,存在正整数k使得∑=i=1k ai 4的概率p=mn,∴当k=1时,∑=i=1k ai 4的概率p1=14,当k=2时,∑=i=1k ai 4的概率p2=34×4=316,当k=3时,∑=i=1k ai 4的概率p=34×4×4=364,当k=4时,∑=i=1k ai 4的概率p=14×4×4×4=1256,∴得∑=i=1k ai 4的概率p=mn=14+316+664+1256=125256,其中m,n是互质的正整数,∴m=125,n=256,则log5m−log4n=log5125−log4256=3−4=−1.11. 已知抛物线y2=2px(p>0),过定点M(m, 0)(m>0,且m≠p2)作直线AB交抛物线于A,B两点,且直线AB不垂直x轴,在A,B两点处分别作该抛物线的切线l1,l2,设l1,l2的交点为Q,直线AB的斜率为k,线段AB的中点为P,则下列四个结论:①x A⋅x B=m2;②当直线AB绕着M点旋转时,点Q的轨迹为抛物线;③当m=p8,k>0时,直线PQ经过抛物线的焦点;④当m=8p,k<0时,直线PQ垂直y轴.其中正确的个数有()A.0个B.1个C.2个D.3个【答案】C【考点】抛物线的性质【解析】设Q点坐标,根据导数的几何意义,即可求得直线AB的方程,代入即可求得x0=−m,即可求得直线AB的方程,代入抛物线方程,利用韦达定理及中点坐标公式,即可求得x A x B=m2,y P=y0.即可判断①④正确.【解答】设Q(x0, y0),则直线AB的方程:y0y=p(x0+x),直线AB过点M(m, 0),所以y0×0=p(x0+m),解得x0=−m,所以直线AB:y0y=p(x0+x),x=y0y p−x0,由y2=2px(p>0),所以y2=2p(y0y p−x0)=2y0y−2px0,所以y2−2y0y+2px0=0,即y2−2y0y−2pm=0,y A+y B=2y0,y A y B=−2pm,所以x A x B=(y A y B)24p2=(−2mp)24p2=m2,则y P=y A+y B2=y0,∴y P=y0.故PQ垂直y轴,故①④正确,12. 设函数f(x)在R上存在导函数f′(x),对任意的x∈R有f(x)+f(−x)=2x2,且当x∈[0, +∞)时,f′(x)>2x.若f(2e−a)−f(a)<4e(e−a),g(x)=e x−ax的零点有()A.0个B.1个C.2个D.3个【答案】C【考点】函数零点的判定定理【解析】令ℎ(x)=f(x)−x2,ℎ(−x)=f(−x)−x2,由ℎ(−x)+ℎ(x)=0,可得函数ℎ(x)为奇函数.利用导数可得函数ℎ(x)在R 上是增函数,f(2e −a)−f(a)<4e(e −a),即ℎ(2e −a)<ℎg(a),解得a ≥e ,再令g(x)=e x−ax =0,分离参数,可得a =e x x,φ(x)=e x x,利用导数,求出当x >0时,φ(x)min =φ(1)=e ,即可判断函数零点的个数. 【解答】当x >0时,令x >1时,φ′(x)>0,函数φ(x)单调递增, 令0<x <1时,φ′(x)<0,函数φ(x)单调递减, ∴ φ(x)min =φ(1)=e ,(1)当x <0时,φ′(x)<0,函数φ(x)单调递减, ∵ a ≥e , ∴ 直线y =a 与y =e x x有两个交点,∴ g(x)=e x −ax 的零点有2个, 故选:C .二、填空题(每题5分,满分20分,将答案填在答题纸上)平行四边形ABCD 中,AB =3,AD =5,|DA →+DC →|=4,则BA →∗AD →=________. 【答案】 −9【考点】平面向量数量积的性质及其运算律 【解析】推导出BD =4,AB ⊥BD ,cos <BA →,AD →>=−cos∠BAD =−35,由此能求出BA →∗AD →.【解答】∵ 平行四边形ABCD 中,AB =3,AD =5,|DA →+DC →|=4,如图, ∴ BD =4,∴ AB 2+DB 2=AD 2,∴ AB ⊥BD , ∴ cos <BA →,AD →>=−cos∠BAD =−35,∴ BA →∗AD →=|BA →|⋅|AD →|⋅cos <BA →,AD →>=3×5×(−35)=−9.(2x 2−1)(1x −2x)7的展开式中含x 7的项的系数是________. 【答案】 1024 【考点】二项式定理的应用 【解析】利用二项式定理把(1x −2x)7展开,可得(2x 2−1)(1x −2x)7的展开式中含x 7的项的系数. 【解答】∵ (2x 2−1)(1x −2x)7=(2x 2−1)(1x 7−14⋅1x 5+841x 3−280⋅1x +560x −672x 3+448x 5−128x 7),故它的展开式中含x 7的项的系数是2×448+128=1024,棱长为1的正方体ABCD −EFGH 如图所示,M ,N 分别为直线AF ,BG 上的动点,则线段MN 长度的最小值为________.【答案】√33【考点】棱柱的结构特征 【解析】线段MN 长度的最小值是异面直线AF 与BG 间的距离,以H 为原点,HE 为x 轴,HG 为y 轴,HD 为z 轴,建立空间直角坐标系,利用向量法能求出线段MN 长度的最小值. 【解答】∵ 棱长为1的正方体ABCD −EFGH 如图所示,M ,N 分别为直线AF ,BG 上的动点, ∴ 线段MN 长度的最小值是异面直线AF 与BG 间的距离,以H 为原点,HE 为x 轴,HG 为y 轴,HD 为z 轴,建立空间直角坐标系, A(1, 0, 1),F(1, 1, 0),B(1, 1, 1),G(0, 1, 0), AF →=(0, 1, −1),AB →=(0, 1, 0), ∴ 线段MN 长度的最小值:d =|AB →|sin <AB →,AF →>=|AB →|√1−[cos <AB →,AF →>]2=1×√1−(1×√2)2=√22.如图所示,已知直线AB 的方程为x a +yb =1,⊙C ,⊙D 是相外切的等圆,且分别与坐标轴及线段AB 相切,|AB|=c ,则两圆半径r =________(用常数a ,b ,c 表示)【答案】 ac +bc −c 22(a +b)【考点】直线与圆的位置关系 【解析】由题意画出图形,得cos∠OAB =ac ,sin∠OAB =bc ,设AF =x ,BE =y ,列关于a ,b ,c ,r ,x ,y 的方程组,整体求解得答案. 【解答】 如图,由已知得,cos∠OAB =ac ,sin∠OAB =bc , 设AF =x ,BE =y , 则{x +y +2r =cr +2r ∗ac+x =a r +2r ∗bc +y =b, ②+③得:2r +2r(ac +bc )+x +y =a +b ④. 把①代入④,得2r(ac +b c )+c =a +b , ∴ r =ac+bc−c 22(a+b).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)设数列{a n }的前n 项和为S n ,已知S n =n 2+n +2. (1)求{a n }的通项公式;(2)若数列{b n }满足b n =a n ∗2a n ,求{b n}前n 项和T n .【答案】S n =n 2+n +2,S n−1=(n −1)2+(n −1)+2(n ≥2), ∴ a n =S n −S n−1=2n(n ≥2),a 1=S 1=4. 故a n ={4(n =1)2n(n ≥2,n ∈N ∗) . b n =a n ∗2a n={2n ∗2a n =2n ∗4n (n ≥2,n ∈N ∗)4∗24=64(n =1), 当n ≥2时,T n =b 1+b 2+⋯+b n =64+2(2×42+3×43+⋯+n ×4n ), 令P n =2×42+3×43+⋯+n ×4n ,∴ 4P n =2×43+3×44+⋯+(n −1)×4n +n ×4n+1, −3P n =2×42+43+44−n ×4n+1=32+43(4n−2−1)4−1−n ×4n+1,∴ P n =−323−4n+1−439+n×4n+13,故T n =64+3P n =(6n−2)∗4n+1+5129(n ≥2,n ∈N ∗),又T 1=64满足上式, ∴ T n =(6n−2)∗4n+1+5129(n ∈N ∗).【考点】 数列的求和 数列递推式 【解析】(1)S n =n 2+n +2,S n−1=(n −1)2+(n −1)+2(n ≥2),相减可得a n =S n −S n−1=2n(n ≥2),a 1=S 1.即可得出. (2)b n =a n ∗2a n={2n ∗2a n =2n ∗4n (n ≥2,n ∈N ∗)4∗24=64(n =1),当n ≥2时,T n =b 1+b 2+⋯+b n =64+2(2×42+3×43+⋯+n ×4n ),令P n =2×42+3×43+⋯+n ×4n ,利用错位相减法即可得出. 【解答】S n =n 2+n +2,S n−1=(n −1)2+(n −1)+2(n ≥2), ∴ a n =S n −S n−1=2n(n ≥2),a 1=S 1=4. 故a n ={4(n =1)2n(n ≥2,n ∈N ∗) . b n =a n ∗2a n={2n ∗2a n =2n ∗4n (n ≥2,n ∈N ∗)4∗24=64(n =1), 当n ≥2时,T n =b 1+b 2+⋯+b n =64+2(2×42+3×43+⋯+n ×4n ), 令P n =2×42+3×43+⋯+n ×4n ,∴ 4P n =2×43+3×44+⋯+(n −1)×4n +n ×4n+1, −3P n =2×42+43+44−n ×4n+1=32+43(4n−2−1)4−1−n ×4n+1,∴ P n =−323−4n+1−439+n×4n+13,故T n =64+3P n =(6n−2)∗4n+1+5129(n ≥2,n ∈N ∗),又T 1=64满足上式, ∴ T n =(6n−2)∗4n+1+5129(n ∈N ∗).底面OABC 为正方形的四棱锥P −OABC ,且PO ⊥底面OABC ,过OA 的平面与侧面PBC 的交线为DE ,且满足S △PDE :S △PBC =1:4. (1)证明:PA // 平面OBD ;(2)当S 2四边形OABC =3S 2△POB 时,求二面角B −OE −C 的余弦值.【答案】∵ 底面OABC 为正方形,且PO ⊥底面OABC ,∴ PO ,OA ,OC 两两垂直,建立如图所示的空间直角坐标系O −xyz , 设OA =OC =2a ,OP =2b ,则O(0, 0, 0),C(0, 2a, 0),B(2a, 2a, 0),F(a, a, 0),P(0, 0, 2b),E(a, a, b). ∵ PO ⊥底面OABC ,CF ⊂底面OABC ,∴ CF ⊥PO .∵ 四边形OABC 为正方形,∴ AC ⊥OB ,∴ CF ⊥平面OBE , ∴ 平面OBE 的一个法向量为CF →=(a, −a, 0). 设平面OEC 的一个法向量为m →=(x, y, z), 而OC →=(0, 2a, 0),OE →=(a, a, b).由{m →∗OC →=0m →∗OE →=0,得{0∗x +2a ∗y +0∗z =0ax +ay +bz =0 , 取得z =−a ,得m →=(b, 0, −a)为平面OCE 的一个法向量. 设二面角B −OE −C 的大小为θ, 由S2四边形OABC=2S 2△POB ,得PO =√63OA ,∴ ba=√63,∴ cosθ=|OF →∗m →||OF →|∗|m →|=√a 2+a 2∗√a 2+b 2=√55, ∴ 二面角B −OE −C 的余弦值为√55.【考点】二面角的平面角及求法 【解析】(1)推导出OA // BC 从而OA // 平面PBC ,进而DE // OA ,再由OA // BC ,得DE // BC .连接AC 交OB 于F 点,连DF .则DF // PA ,由此能证明PA // 平面OBD . (2)推导出PO ,OA ,OC 两两垂直,建立空间直角坐标系O −xyz ,利用向量法能求出二面角B −OE −C 的余弦值. 【解答】∵ 底面OABC 为正方形,且PO ⊥底面OABC ,∴ PO ,OA ,OC 两两垂直,建立如图所示的空间直角坐标系O −xyz , 设OA =OC =2a ,OP =2b ,则O(0, 0, 0),C(0, 2a, 0),B(2a, 2a, 0),F(a, a, 0),P(0, 0, 2b),E(a, a, b). ∵ PO ⊥底面OABC ,CF ⊂底面OABC ,∴ CF ⊥PO .∵ 四边形OABC 为正方形,∴ AC ⊥OB ,∴ CF ⊥平面OBE , ∴ 平面OBE 的一个法向量为CF →=(a, −a, 0). 设平面OEC 的一个法向量为m →=(x, y, z), 而OC →=(0, 2a, 0),OE →=(a, a, b).由{m →∗OC →=0m →∗OE →=0,得{0∗x +2a ∗y +0∗z =0ax +ay +bz =0 , 取得z =−a ,得m →=(b, 0, −a)为平面OCE 的一个法向量. 设二面角B −OE −C 的大小为θ, 由S2四边形OABC=2S 2△POB ,得PO =√63OA ,∴ ba=√63,∴ cosθ=|OF →∗m →||OF →|∗|m →|=√a 2+a 2∗√a 2+b 2=√55, ∴ 二面角B −OE −C 的余弦值为√55.深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:(1)求b,c,d,e,n的值,据此能否有97.5%的把握认为球队胜利与甲球员参赛有关;(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:0.2,0.5,0.2,0.1,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:0.4,0.2,0.6,0.2.则:1)当他参加比赛时,求球队某场比赛输球的概率;2)当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;3)如果你是教练员,应用概率统计有关知识.该如何使用乙球员?附表及公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).【答案】b=8,c=8,d=20,e=20,n=50,K2=50×(22×12−8×8)230×20×30×20≈5.556>5.024,∴有97.5%的把握认为球队胜利与甲球员参赛有关;1)设A1表示“乙球员担当前锋”;A2表示“乙球员担当中锋”;A3表示“乙球员担当后卫”;A4表示“乙球员担当守门员”;B表示“球队输掉某场比赛”,则P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)+P(A4)P(B|A4)=0.2×0.4+0.5×0.2+0.2×0.6+0.1×0.2=0.32;2)P(A1|B)=P(A1B)P(B)=0.2×0.40.32=0.25.3)因为P(A1|B):P(A2|B):P(A3|B):P(A4|B)=0.08:0.10:0.12:0.02,所以,应该多让乙球员担任守门员,来扩大赢球场次.【考点】条件概率与独立事件【解析】(1)分别求出b,c,d,e,n的值,求出K2的值,利用临界值表可得出结论;(2)1)根据条件概率公式分别计算出乙球员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,最后相加得到已乙球员参加比赛时,球队输球的概率;2)利用乙球员担任前锋时输球的概率P(A 1|B)除以球队输球的概率P(B)即可得出答案;3)分别计算出乙队员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,以输球概率最小时,乙球员担任的角色,作为教练员使用乙队员的依据. 【解答】b =8,c =8,d =20,e =20,n =50,K 2=50×(22×12−8×8)230×20×30×20≈5.556>5.024,∴有97.5%的把握认为球队胜利与甲球员参赛有关;1)设A 1表示“乙球员担当前锋”;A 2表示“乙球员担当中锋”;A 3表示“乙球员担当后卫”;A 4表示“乙球员担当守门员”;B 表示“球队输掉某场比赛”,则P(B)=P(A 1)P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)P(B|A 3)+P(A 4)P(B|A 4)=0.2×0.4+0.5×0.2+0.2×0.6+0.1×0.2=0.32; 2)P(A 1|B)=P(A 1B)P(B)=0.2×0.40.32=0.25.3)因为P(A 1|B):P(A 2|B):P(A 3|B):P(A 4|B)=0.08:0.10:0.12:0.02,所以,应该多让乙球员担任守门员,来扩大赢球场次. 已知椭圆x 2a2+y 2b 2=1(a >b >1)的离心率为12,左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,⊙F 2:(x −c)2+y 2=1与该椭圆有且只有一个公共点. (1)求椭圆标准方程;(2)过点P(4c, 0)的直线与⊙F 2相切,且与椭圆相交于A ,B 两点,求证:F 2A ⊥F 2B ;(3)过点P(4c, 0)的直线l 与⊙F 1:(x +1)2+y 2=r 2(r >1)相切,且与椭圆相交于A ,B 两点,试探究k F 2A ,k F 2B 的数量关系. 【答案】∵ ⊙F 2与椭圆有且只有一个公共点,∴ 公共点为(a, 0)或(−a, 0),若公共点为(−a, 0)时,则a +c =1,又ca =12,解得a =23<1,与a >1矛盾,故公共点为(a, 0).∴ a −c =r =1,又e =ca =12,∴ a =2,c =1.b 2=a 2−c 2=3. 反之,当c =1时,联立{(x −1)2+y 2=1x 24+y 23=1,解得{x =2y =0满足条件.∴ 椭圆标准方程为x 24+y 23=1.证明:∵ P(4, 0),设过P(4, 0)的直线l:x =my +4, 联立{x =my +4x 24+y 23=1,得(4+3m 2)y 2+24my +36=0.设A(x 1, y 1),B(x 2, y 2),则y 1+y 2=−24m4+3m 2,y 1y 2=364+3m 2,又F 2(1, 0), ∴ F 2A →⋅F 2B →=(x 1−1)(x 2−1)+y 1y 2=(1+m 2)y 1y 2+3m(y 1+y 2)+9=36(1+m 2)4+3m 2−72m 24+3m 2+9=72−9m 24+3m 2.由l:x =my +4与⊙F 2:(x −1)2+y 2=1相切得:2=1,m 2=8, ∴ F 2A →⋅F 2B →=0,∴ F 2A →⊥F 2B →.即:F 2A ⊥F 2B . 猜:k F 2A +k F 2B =0.证明如下: 由(2)得k F 2A +k F 2B =y 1x1−1+y 2x 2−1=2my 1y 2+3(y 1+y 2)m 2y 1y 2+3m(y 1+y 2)+9.∵ 2my 1y 2+3(y 1+y 2)=2m ×364+3m 2−72m4+3m 2=0,∴ k F 2A +k F 2B =0. 【考点】 椭圆的离心率 【解析】(1)由⊙F 2与椭圆有且只有一个公共点,可得公共点为(a, 0)或(−a, 0),若公共点为(−a, 0)时,得出矛盾,故公共点为(a, 0).因此a −c =r =1,又e =ca =12,b 2=a 2−c 2.即可得出.(2)P(4, 0),设过P(4, 0)的直线l:x =my +4,联立{x =my +4x 24+y 23=1 ,得(4+3m 2)y 2+24my +36=0.设A(x 1, y 1),B(x 2, y 2),又F 2(1, 0),利用数量积运算性质与根及其系数的关系可得:F 2A →⋅F 2B →=(x 1−1)(x 2−1)+y 1y 2=(1+m 2)y 1y 2+3m(y 1+y 2)+9.由l:x =my +4与⊙F 2:(x −1)2+y 2=1相切得:2=1,解得m 2=8,即可得出F 2A →⋅F 2B →=0.(3)猜:k F 2A +k F 2B =0.分析如下:利用斜率计算公式、根与系数的关系即可得出.【解答】∵ ⊙F 2与椭圆有且只有一个公共点,∴ 公共点为(a, 0)或(−a, 0),若公共点为(−a, 0)时,则a +c =1,又ca =12,解得a =23<1,与a >1矛盾,故公共点为(a, 0).∴ a −c =r =1,又e =ca =12,∴ a =2,c =1.b 2=a 2−c 2=3. 反之,当c =1时,联立{(x −1)2+y 2=1x 24+y 23=1,解得{x =2y =0满足条件.∴ 椭圆标准方程为x 24+y 23=1.证明:∵ P(4, 0),设过P(4, 0)的直线l:x =my +4, 联立{x =my +4x 24+y 23=1,得(4+3m 2)y 2+24my +36=0.设A(x 1, y 1),B(x 2, y 2),则y 1+y 2=−24m4+3m 2,y 1y 2=364+3m 2,又F 2(1, 0), ∴ F 2A →⋅F 2B →=(x 1−1)(x 2−1)+y 1y 2=(1+m 2)y 1y 2+3m(y 1+y 2)+9=36(1+m 2)4+3m 2−72m 24+3m 2+9=72−9m 24+3m 2.由l:x =my +4与⊙F 2:(x −1)2+y 2=1相切得:2=1,m 2=8, ∴ F 2A →⋅F 2B →=0,∴ F 2A →⊥F 2B →.即:F 2A ⊥F 2B . 猜:k F 2A +k F 2B =0.证明如下: 由(2)得k F 2A +k F 2B =y 1x1−1+y 2x 2−1=2my 1y 2+3(y 1+y 2)m 2y 1y 2+3m(y 1+y 2)+9.∵ 2my 1y 2+3(y 1+y 2)=2m ×364+3m 2−72m4+3m 2=0, ∴ k F 2A +k F 2B =0.已知函数f(x)=√xax .(1)讨论函数f(x)的零点个数;(2)已知g(x)=(2−x)e √x ,证明:当x ∈(0, 1)时,g(x)−f(x)−ax −2>0. 【答案】√xf(x)=lnx −a √x ⋅x .令x 32=t ,∴ x =t 23(t >0).令ℎ(t)=lnt −32at ,则函数y =ℎ(t)与y =f(x)的零点个数情况一致 .ℎ(t)=1t−32a .(i)a ≤0时,ℎ′(t)>0.∴ ℎ(t)在(0, +∞)上单调递增. 又ℎ(1)=−32a ≥0,ℎ(ea+1a)=a +1a−32aea+1a≤a +1a−32a ⋅1e 2=(1−32e 2)a +1a<0,∴ 有1个零点.(ii)a >0时,ℎ(t)在(0,23a )上单调递增,(23a ,+∞)上单调递减. ∴ ℎ(t)max =ℎ(23a )=ln 23a −1.①ln 23a <1即a >23e 时,ℎ(23a )<0,无零点. ②ln 23a =1即a =23e 时,ℎ(23a )=0,1个零点.③ln 23a >1即0<a <23e 时,ℎ(23a )>0,又23a >e >1,ℎ(1)=−32a <0.又23a −49a 2=23a (1−23a )<23a (1−e)<0,ℎ(49a 2)=ln(23a )2−32a ⋅49a 2=21n 23a −23a , 令φ(a)=21n 23a −23a ,φ′(a)=2⋅3a 2(−23⋅1a 2)+23a 2=2−6a 3a 2>0,∴ φ(a)在(0,23e )上单调递增,∴ φ(a)<φ(23e )=2−e <0, ∴ 两个零点.综上:当a≤0或a=23e 时,1个零点;当0<a<23e时,2个零点;当a>23e时,0个零点.证明要证g(x)−f(x)−ax−2>0,只需证√x+2<(2−x)e√x.令√x=m∈(0,1),只需证:21nmm+2<(2−m2)e m.令l(m)=(2−m2)e m,l′(m)=(−m2−2m+2)e m,∴l(m)在(0,√3−1)上单调递增,在(√3−1,1)上单调递减,∴l(m)>l(1)=e且l(m)>l(0)=2.令t(m)=lnmm ,t′(m)=1−lnmm2>0,∴t(m)在(0, 1)上单调递增,∴t(m)<t(2)=0,∴21nmm+2<2,故g(x)−f(x)−ax−2>0.【考点】利用导数研究函数的单调性函数零点的判定定理【解析】(1)√xf(x)=lnx−a√x⋅x.令x32=t,问题转化为求函数令ℎ(t)=lnt−32at,零点的个数问题,先求导,再分类讨论,根据函数零点存在定理即可求出,(2)利用分析法,和构造函数法,借用导数,即可证明.【解答】√xf(x)=lnx−a√x⋅x.令x32=t,∴x=t23(t>0).令ℎ(t)=lnt−32at,则函数y=ℎ(t)与y=f(x)的零点个数情况一致.ℎ(t)=1t −32a.(i)a≤0时,ℎ′(t)>0.∴ℎ(t)在(0, +∞)上单调递增.又ℎ(1)=−32a≥0,ℎ(e a+1a)=a+1a−32ae a+1a≤a+1a−32a⋅1e2=(1−32e2)a+1a<0,∴有1个零点.(ii)a>0时,ℎ(t)在(0,23a )上单调递增,(23a,+∞)上单调递减.∴ℎ(t)max=ℎ(23a )=ln23a−1.①ln23a <1即a>23e时,ℎ(23a)<0,无零点.②ln 23a =1即a =23e 时,ℎ(23a )=0,1个零点.③ln 23a >1即0<a <23e 时,ℎ(23a )>0,又23a >e >1,ℎ(1)=−32a <0.又23a −49a 2=23a (1−23a )<23a (1−e)<0,ℎ(49a 2)=ln(23a )2−32a ⋅49a 2=21n 23a −23a , 令φ(a)=21n 23a −23a ,φ′(a)=2⋅3a 2(−23⋅1a2)+23a2=2−6a 3a 2>0,∴ φ(a)在(0,23e)上单调递增,∴ φ(a)<φ(23e )=2−e <0, ∴ 两个零点.综上:当a ≤0或a =23e 时,1个零点;当0<a <23e 时,2个零点;当a >23e 时,0个零点. 证明要证g(x)−f(x)−ax −2>0, 只需证√x+2<(2−x)e √x .令√x =m ∈(0,1), 只需证:21nm m+2<(2−m 2)e m .令l(m)=(2−m 2)e m ,l ′(m)=(−m 2−2m +2)e m ,∴ l(m)在(0,√3−1)上单调递增,在(√3−1,1)上单调递减, ∴ l(m)>l(1)=e 且l(m)>l(0)=2. 令t(m)=lnm m,t ′(m)=1−lnm m 2>0,∴ t(m)在(0, 1)上单调递增, ∴ t(m)<t(2)=0, ∴21nm m+2<2,故g(x)−f(x)−ax −2>0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的参数方程为{x =2cosθy =sinθ(θ为参数),直线l 的极坐标方程为ρ=2cosθ−2sinθ.(1)求曲线C 和直线l 的直角坐标方程,并求出曲线C 上到直线l 的距离最大的点的坐标,(2)求曲线C 的极坐标方程,并设A ,B 为曲线C 上的两个动点,且OA ∗OB →=0,求|AB →|2的取值范围. 【答案】∵ 曲线C 的参数方程为{x =2cosθy =sinθ(θ为参数),∴曲线C的直角坐标方程为:x24+y2=1,∵直线l的极坐标方程为ρ=2cosθ−2sinθ.∴直线l的普通方程为:x−2y−2=0,则曲线C上点到直线l的距离:d=√5=√5=√5√2sin(θ−π4)+1brack,当θ=3π4时,d最大,此时,P(−√2,√22).曲线C的极坐标方程为ρ2cos2θ+4ρ2sin2θ=4,即ρ2=4cos2θ+4sin2θ=43sin2θ+1.设A(ρ1,θ),B(ρ2,θ+π2),则|AB|2=ρ12+ρ22=43sin2θ+1+43cos2θ+1=2094sin22θ+4∈[165,5].∴|AB→|2的取值范围是[165, 5].【考点】圆的极坐标方程【解析】(1)曲线C的参数方程消去参数,能求出曲线C的直角坐标方程;由直线l的极坐标方程能求出直线l的普通方程,由此能求出曲线C上点到直线l的距离最大的点的坐标.(2)曲线C的极坐标方程转化为ρ2=4cos2θ+4sin2θ=43sin2θ+1.设A(ρ1,θ),B(ρ2,θ+π2),能求出|AB→|2的取值范围.【解答】∵曲线C的参数方程为{x=2cosθy=sinθ(θ为参数),∴曲线C的直角坐标方程为:x24+y2=1,∵直线l的极坐标方程为ρ=2cosθ−2sinθ.∴直线l的普通方程为:x−2y−2=0,则曲线C上点到直线l的距离:d=√5=√5=√5√2sin(θ−π4)+1brack,当θ=3π4时,d最大,此时,P(−√2,√22).曲线C的极坐标方程为ρ2cos2θ+4ρ2sin2θ=4,即ρ2=4cos2θ+4sin2θ=43sin2θ+1.设A(ρ1,θ),B(ρ2,θ+π2),则|AB|2=ρ12+ρ22=43sin2θ+1+43cos2θ+1=2094sin22θ+4∈[165,5].∴|AB→|2的取值范围是[16, 5].5[选修4-5:不等式选讲]已知函数g(x)=|2x+1|−|x−m|.(1)当m=3时,求不等式g(x)>4的解集;(2)若g(x)≥|x−4|的解集包含[3, 5],求实数m的取值范围.【答案】解:(1)当m=3时,g(x)>4,即|2x+1|−|x−3|>4.①当x≥3时,不等式化为2x+1−x+3>4,解得x≥3.≤x<3时,不等式化为2x+1+x−3>4,②当−12解得2<x<3.③当x<−1时,不等式化为−2x−1+x−3>4,2解得x<−8.综上,不等式的解集为{x|x<−8或x>2}.(2)g(x)≥|x−4|的解集包含[3, 5]⇔g(x)≥|x−4|在[3, 5]上恒成立⇔|2x+1|−|x−m|≥|x−4|在[3, 5]上恒成立.①当3≤x≤4时,g(x)≥|x−4|恒成立⇔2x+1≥|x−m|+4−x恒成立⇔3−3x≤x−m≤3x−3恒成立,解得−3≤m≤9.②当4<x≤5时,g(x)≥|x−4|恒成立⇔|2x+1|≥|x−m|+x−4恒成立⇔−x−5≤x−m≤x+5恒成立,解得−5≤m≤11.所以,实数m的取值范围为{m|−3≤m≤9}.【考点】绝对值不等式的解法与证明【解析】(1)分段去绝对值,分别求出每个不等式组的解集,再取并集即得所求.(2)g(x)≥|x−4|的解集包含[3, 5]⇔g(x)≥|x−4|在[3, 5]上恒成立⇔|2x+1|−|x−m|≥|x−4|在[3, 5]上恒成立.1)当3≤x≤4时,⇔3−3x≤x−m≤3x−3恒成立,解得m.2)当4<x≤5时,⇔|2x+1|≥|x−m|+x−4恒成立解得−m.【解答】解:(1)当m=3时,g(x)>4,即|2x+1|−|x−3|>4.①当x≥3时,不等式化为2x+1−x+3>4,解得x≥3.≤x<3时,不等式化为2x+1+x−3>4,②当−12解得2<x<3.③当x<−1时,不等式化为−2x−1+x−3>4,2解得x<−8.综上,不等式的解集为{x|x<−8或x>2}.(2)g(x)≥|x−4|的解集包含[3, 5]⇔g(x)≥|x−4|在[3, 5]上恒成立⇔|2x+1|−|x−m|≥|x−4|在[3, 5]上恒成立.①当3≤x≤4时,g(x)≥|x−4|恒成立⇔2x+1≥|x−m|+4−x恒成立⇔3−3x≤x−m≤3x−3恒成立,解得−3≤m≤9.②当4<x≤5时,g(x)≥|x−4|恒成立⇔|2x+1|≥|x−m|+x−4恒成立⇔−x−5≤x−m≤x+5恒成立,解得−5≤m≤11.所以,实数m的取值范围为{m|−3≤m≤9}.。