题目:基于ANSYS的钢筋混凝土梁的裂纹损伤分析学院: 理学院专业: 工程力学学号: 200907152008学生姓名: 张帅磊指导教师: 李明日期: 二〇一三年六月摘要钢筋混凝土结构在设计荷载作用下,在其受拉区出现裂缝是难以避免的,过大的裂缝不仅影响结构的安全性还影响结构的耐久性,必须通过配筋来限制裂缝开展宽度。
ANSYS中的SOLID65是专门为分析混凝土结构定义的单元,可以显示结构的应力应变,还可以显示裂缝的分布情况,为钢筋混凝土梁的设计提供了理论依据。
本文主要使用有限元分析软件ANSYS对钢筋混凝土梁进行分析,通过选择适当的单元,简化建模过程,获得在位移荷载作用下,梁的变形数据,和裂纹分布同时。
为钢筋混凝土梁在工程实际应用中提供适当的数据参考,以便更快捷地进行施工材料的选取,缩短工期。
关键字:钢筋混凝土梁;有限元分析;ANSYS;裂缝AbstractUnder design load, the reinforced concrete structures in the cracks in tensile area is difficult to avoid excessive cracks not only affects the safety of the structure also affect the durability of the structure, must through the reinforcement to limit the crack width in the ANSYS SOLID65 is defined specifically for analysis of reinforced concrete structure unit, can display the structure of the stress and strain, can also represent the distribution of cracks, provides a theoretical basis for the design of the reinforced concrete beam。
In this paper, we use finite element analysis software ansys analysis of reinforced concrete beams, by selecting the appropriate cell, simplify the modeling process, obtained under displacement load and deformation of the beam, and crack distribution for reinforced concrete beam at the same time to provide the appropriate data in the practical engineering application, in order to more quickly for the selection of construction materials, shorten the construction periodKeywords:reinforced concrete beam;finite element analysis;ansys; crack目录1 绪论 (1)1.1 钢筋混凝土梁有限元分析的意义 (1)1.2 有限元方法简介 (1)1.3 钢筋混凝土有限元分析现状 (3)1.4 ANSYS在钢筋混凝土梁中的运用 (4)1.5 本文研究内容 (5)2 材料本构关系模型和混凝土的开裂条件 (6)2.1 钢筋的本构关系 (6)2.2 混凝土的本构关系 (6)2.3 混凝土的破坏准则。
(6)3 钢筋混凝土梁非线性分析的几种单元 (8)3.1 钢筋混凝土结构有限元模型的选择 (8)3.1.1 分离式模型 (8)3.1.2 组合式模型 (8)3.1.3 整体式模型 (8)3.2 混凝土单元-SOLID65 (8)3.3 钢筋单元-LINK8 (9)4 分离式钢筋混凝土梁算例 (10)4.1 问题介绍 (10)4.2 建立分析模型 (10)4.3 施加约束条件和施加载荷 (12)4.4 分析及后处理 (13)4.4.1 设置载荷步结束时间和子载荷步 (13)4.4.2 绘制结构变形图 (14)4.4.3 裂缝开展情况 (14)5 总结和展望 (16)5.1 总结 (16)5.2 展望 (16)参考文献 (17)致谢 (18)1 绪论1.1 钢筋混凝土梁有限元分析的意义钢筋混凝土结构问世已有100 多年,由于它的经济性,耐久性,整体性,可模性以及耐火性使它在世界各国的土木工程中得到了广泛的应用。
钢筋混凝结构是由钢筋和混凝土这两种性质迥异的材料组合而成的[1],混凝土性质复杂,应力应变关系是非线性的,在复杂应力条件下的本构关系仍不十分清楚,普遍适用的强度理论也未建立,钢筋与混凝土之间的粘结关系性质也很复杂。
同时混凝土杭拉强度很低,在通常情况下钢筋混凝土结构总是带裂缝工作的,由于以上因素使得对钢筋混凝结构的有限元分析变得十分困难。
利用大型有限元分析软件ANSYS 模拟钢筋混凝土梁自开始受荷直到破坏的全过程,分析裂缝的形成和发展机理,确定结构的开裂荷载、破坏荷载等结构的重要特性,为设计提供可靠依据[2]。
1.2 有限元方法简介有限元法最初起源于结构分析,由结构力学的位移法发展而来,其核心思想就是分片逼近。
1956年美国航空工程师Turner和Clough为分析飞机结构,将结构力学的矩阵位移法原理推广到弹性力学的平面问题,获得巨大成功,分析结果与实验数据非常吻合。
之后Clough又用这种方法处理了一些复杂的平面弹性力学问题并于1960年首次提出“有限单元法”这个名词。
早期的有限元法是建立在虚位移原理或最小势能原理基础上的,这对于人们理解有限元法的物理概念是很有帮助的。
后来一些学者又提出一些新的变分原理和广义变分原理,并相继出现一些适应性更强、计算精度更高的新型单元模型如:应力混合单元、杂交单元、杂交混合单元和广义协调单元等等。
数学家们则发展了微分方程的近似解法,包括有限差分方法,变分原理和加权余量法。
在1963年前后,经过J.F.Besseling,R.J.Melosh,R.E.Jones,R.H.Gallaher,T.H.H.Pian(卞学磺)等许多人的工作,认识到有限元法就是变分原理中Ritz近似法的一种变形,发展了用各种不同变分原理导出的有限元计算公式。
1965年O.C.Zienkiewicz和Y.K.Cheung(张佑启)发现只要能写成变分形式的所有场问题,都可以用与固体力学有限元法的相同步骤求解。
1969年B.A.Szabo和G.C.Lee指出可以用加权余量法特别是Galerkin法,导出标准的有限元过程来求解非结构问题。
近50年来有限元方法已经有了巨大的发展,其应用领域已从单一的结构分析扩展到温度场分析、电磁场分析、流体流速场分析及声场分析等许多领域。
有限元分析利用数学近似的方法对真实物理系统进行模拟。
它是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段[8]。
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣[9]。
经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同[3]。
有限元求解问题的基本步骤通常为:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。
离散化应据结构的特点,选择不同类型的单元。
对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。
同时应根据计算分析的精度,合理确定单元的尺寸和阶次。
第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。
第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。
为保证问题求解的收敛性,单元推导有许多原则要遵循。
对工程应用而言,重要的是应注意每一种单元的解题性能与约束。
例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解[10]。
第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。
总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。
第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。
联立方程组的求解可用直接法、迭代法和随机法。
求解结果是单元结点处状态变量的近似值。
对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。
简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。
前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。
结构有限元分析的目的一般是:(1)克服传统设计方法的不足。
以往的设计大都是基于经验的,基于经验的设计在以往的产品开发中取得了巨大的成功,但也存在一些不足,一般只能解决行不行的问题,很难解决优不优的问题,并且经验的积累需要时间,有时也不可靠。
(2)优化设计。
采用合理的,科学的方法对结构的性能进行分析,并在传统方法的基础上进行优化。
1.3 钢筋混凝土有限元分析现状最早用有限元方法分析钢筋混凝土梁的学者是Ngo和Scordelis。