日本钢结构建筑介绍及对中国的启示
一、日本钢结构建筑的比例分析
日本森林覆盖率高, 日本民族自古就有喜爱木建筑的传统。
日本总务省每5年对全国的住宅情况进行统计, 根据最新统计结果显示, 从建筑构造方面来统计, 木造结构为3011万户, 占整体住宅57.8%; 独户住宅达到2860万户, 占整体住宅的54.9%。
住宅木结构统计中, 能够计算出平均每栋住宅的面积为121平方米左右, 基本属于独户住宅的范畴。
日本人之因此喜欢木结构独户式住宅, 除传统习惯外, 木结构房屋使用寿命长、建设周期短、节能、生态、环保、抗震等特点也是其受青睐的重要原因。
但为什么会认为日本是钢建筑先进国家呢? 在日本大中城市中, 鳞次栉比的摩天大厦是另一道风景线, 这些建筑以钢结构为主。
钢结构建筑是一个复杂的技术、设备、部品、材料有机结合体的集成产品, 是建筑产业化的发展方向和必然产物。
由于日本特殊的地质条件, 日本建筑钢结构及相关钢材的研发与生产一直处于世界领先水平。
根据日本总务省统计, 日本非木造为2199万户, 占比为42.2%, 其中钢筋混凝土与钢结构为1766万户, 占比为33.9%。
现代日本住宅, 从结构上讲, 木结构的占多数, 但钢筋混凝土结构及钢结构等住宅占到非木结构的80.3%。
图一不同建筑结构施工面积
为了分析包括住宅在内所有建筑物钢筋混凝土与钢结构所占比例, 引用日本国土交通省的统计数字, 日本新施工房屋总面积为14845.6万平方米, 其中, 钢结构(S)为5234.3万平方米, 约占35.3%, 钢筋混凝土结构( RC) 为2967.5万平方米, 约占20%: 钢管混凝土结构(SRC)为346.5万平方米, 约占2.3%: 从图一能够分析得出1970后钢结构始终高于钢筋混凝土面积比例的结论。
表1 日本施工的不同用途及结构建筑物统计数量( 面积)
如表1所示, 的统计中, 钢结构建筑为12.8万栋, 占总数的21.7%, 面积4922万平方米, 占总面积的36.7%。
根据与的统计,
日本的钢结构建筑每年开工的面积基本保持在35%左右的水平。
根据表1的数据, 住宅中木结构的比例很高, 但我们把住宅与非住宅分别观察的话, 就会发现在非住宅的建筑中钢结构建筑为5.49万栋, 占到了58.8%, 钢结构面积也接近70%。
特别是在像东京、大阪这样的大城市, 人口稠密, 土地资源有限, 用于商业的非住宅建筑多以高层或超高层为主, 为达到更好的抗震效果, 降
低建筑成本, 钢结构是唯一的选择。
在地震频发的日本, 钢结构因其优良的抗震性能得到了广泛
的应用。
建筑标准规范随着重大地震的发生不断调整完善, 设计方法也随之改进。
结构用钢材、连接方法和结构类型都在不断地发展创新。
1995年, 日本阪神大地震后, 日本政府提出了”零死亡”计划, 抗震性能卓越的钢结构、轻质材料等各种最先进的防震手段被广泛应用, 所有老式建筑全部采用不同形状的钢结构框架进行加固。
3月11日, 日本遭遇人类观测史上最高级别的9级地震, 同时还伴
有特大海啸的袭击。
事实证明, 大量的房屋毁坏和人员伤亡是来自更具破坏力的海啸, 而非房屋倒塌, 这与日本的钢结构建筑占有
率较高和日本重视建筑防灾、抗灾、对生命呵护的安全设计有直接关系。
二、日本推进钢结构建筑产业化的历程
日本钢结构建筑的历史有1 左右。
日本第一座应用钢结构的建筑是1894年建于东京的集英出版社厂房。
设计和建造钢结构建筑的
基本技术在19 前后开始成型。
1926年, 热轧钢制品标准出台: 1932年《城区建筑法实施细则》被修订, 正式批准焊接结构在建筑中的应用。
同年, 结合使用了铆接和焊接的住友大厦在东京丸之内区建成。
1941年, 日本建筑学会颁布设计规范——《钢结构计算标准》, 总体设计理论也更加系统化。
然而, 此时的日本正处于第二次世界大战的硝烟之中, 建筑行业近乎停滞。
1945年战争结束后, 当时的日本百废待兴, 经济萧条, 为尽快实现经济复苏, 按照抗震、快省的要求展开战后重建工作, 推行建筑的工业化生产和建设。
1950年, 日本颁布了《建筑基准法》, 以法律的形式明确了建筑的抗震设计标准和材料检验、工程验收标准等, 为建筑产业化的实施提供法律保障。
按照日本对建筑结构的统计口径: 建筑分为木结构、钢筋混凝土结构(RC)、钢管混凝土结构(SRC)和钢结构(S)等, 对建筑的结构形式的选择, 政府在《建设基准法》中, 只对抗震标准和建筑材料上提出强制性的要求, 具体选择什么结构由开发商自行决定。
但无论选择那种结构类型的建筑, 都必须经过设计标准审查, 使
用经过专业机构认证的建筑材料, 由具有相应资质的专业施工队
伍进行施工。
钢结构的建筑在1965年后快速增加, 1987年钢结构在所有的结构形式中占据了最大的份额, 钢结构在日本得到了相当
广泛的应用。
日本钢结构建筑的发展有其特定历史条件和环境。
1950年后
《建筑标准法》中一些法令和规范的修订、设计方法的改变以及地震的发生情况。
每次大地震发生后, 规范也相应地被修订。
建筑物高度(31米以下)的限制在1965年被废除, 结构设计方
法也因此需要相应的调整。
除了允许应力法或静态弹性设计法这样的主流设计方法, 一种更为先进的结合了塑性设计法和动力特性
分析的设计方法被采用, 从此广泛应用于高层和超高层建筑的设
计中, 而这类建筑都采用的是钢结构。
1981年颁发《新耐震设计法》, 采用了沿袭至今的两阶段设计法: 第一阶段采用弹性设计法, 假定地震等级为中级; 第二阶段
设定在建筑物使用期间可能发生大地震, 根据建筑结构的水平极
限强度采用弹塑性设计。
这次修订之后, 建筑物的抗震性能大大提高。
然而, 1995年的阪神地震破坏程度之大, 让即使建于1981年后的建筑也来能幸免地受到毁坏, 特别是钢构建筑粱柱的焊接处
和柱基处。
于是1998年《建筑标准法》被再次修订。
规范中对梁柱的焊接处和柱基作了详细的更改, 、两次修订《建筑基准法》, 补充条款, 提高建筑的抗震标准, 这些标准已经广泛应用在当今
的钢结构建筑中。
从政府层面看, 尽管政府对建筑结构没有明确的政策差异, 但对建筑抗震性能却有非常明确的法律条款和强制性规范, 对一
些地震活跃地区住宅和学校、医院等公共设施实行强制性抗震标准, 要求学校、医院建筑做到震时的”避难所”。
从行业组织的作用看, 协助政府解决技术和标准的衔接, 组织设计机构、院校专家对建筑设计的标准、技术、规范的编制和检验、产品认证的责任体系。
对一些新型建筑材料一般由专业协会组织评审检验后, 再由政府签发通用许可。
对建筑用钢材料的质量实行可追溯制度, 每批材料的标准审定和批准文号都存档备案, 对生产企业实现全过程的监管和检验, 保证合乎标准的材料才能运用到建筑中去。
日本建筑企业极为重视新技术新材料的研发工作, 企业建有自己的建筑技术研究所, 研发具有自主知识产权的技术和材料、改进施工工艺。
在建筑抗震技术上, 强调持续不断改进。
每次大地震发生后, 企业都会派出技术专家深入灾区, 根据建筑受损程度和受损点情况, 专题进行研究和提出新的技术解决方案, 改进结构体系或材料属性, 重视对造成伤害案例的研究, 技术研发成果得到国家政府和全社会的高度重视, 并进行推广和运用。
这一点值得中国建筑企业很好的学习和借鉴。
三、日本钢结构建筑现状
日本非住宅用建筑多以高层建筑和公共设施为主, 出于结构安全和节能的考虑, 选择钢结构的比例较高, 钢结构具有安装容易、施工周期短、自重轻、抗震性能好及环境污染少、可回收利用的综合优势, 从有利于资源保护和可持续发展的要求出发, 日本社会对发展钢结构建筑表现出战略眼光。
在规划设计住宅项目时, 把采用钢结构建筑体系作为考虑方案。
在学校、医院和文化。