热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。
图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。 换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。
图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速和阀门的开度等因素的影响。冷流体的温度与大气温度和换热器回流水的流量等因素有关。 (3)加热炉的启停机的影响。 (4)室内温度与管路内气体变化和阀门开度的影响。 首先考虑采用单回路控制系统。方块图如下图3所示:
图3单回路控制系统原理图 从图3所示的控制系统中可以看出,从冷流体管路阀门或离心泵转速变化到热流体出口温度改变,在这中间要相继通过冷流体流量变化,换热器热交换速率变化,热流体出口温度变化等一系列过程,因此整个控制通道的容量滞后大、时间常数大、这就导致控制系统的控制作用不及时、最大偏差大、过度时间长、抗干扰能力差、控制精度降低。而工艺上对出口温度要求比较严格,一般希望波动范围不超过+-(1%~2%)。根据大量的工程实践经验和实验的结果证明,采用图3所示单回路控制系统是达不到要求的,必须寻求其他控制方案。 分析各种影响热器出口温度的因素,除了热流体的流量和温度外,冷流体的流量、阀门的开度等因素和进入系统的位置,首先影响冷流体的流量,而后经过换热器从而影响影响热流体的出口温度。如果以冷流体流量为被控变量,输送冷流体的离心泵转速为操纵变量,够成单回路控制系统,则该控制系统的通道的容量滞后大大减少,对来自离心泵的转速、阀门开度变化等干扰能及时克服,减少他们对热流体出口温度的影响。但是很显然,热流体的流量和温度的变化没有包含在内,同时系统也没有对热流体出口温度构成闭环控制,因此,仍然不能保证出口温度稳定在设定值上,还需进行改造。 为了解决上述滞后时间和控制要求之间的矛盾,保持热流体的出口温度稳定,可以根据管路冷流量的变化,先调节离心泵的转速,然后再根据热流体出口温度与设定值之间的偏差,根据合适的控制算法,进一步调节流体的流量,以保持出口温度的稳定,这样组成流体出口温度调节器和流体流量调节器串联起来的串级控制系统。其方块图如下图4所示:
图4串级控制系统原理图 根据图4可以看出来自冷流体流量方面的干扰因素包括在副回路内,因此可以大大减少这些扰动因素对于热流体出口温度的影响。对于热流体流量和温度方面的干扰,采用串级控制系统也可以得到改善,具体控制效果明显改善。 综上所述,我们可以对串级控制系统方案的基本参数进行确定: 主回路:热流体出口温度——冷流体流量控制回路 副回路:冷流体流量——离心泵转速控制回路 主变量:换热器出口温度 副变量:冷流体流量 主检测变送器:铂电阻温度传感器 副检测变送器:涡轮流量传感器 执行器:变频器
三、仪表的选型以及参数的确定 1.温度的测量 选择装配式热电偶如图5所示
图5装配式热电偶
测量范围及允许误差范围 热电偶类别 代号 分度号 测量范围 基本误差限 镍铬-康铜 WRK E 0-800℃ ±0.75%t 镍铬-镍硅 WRN K 0-1300℃ ±0.75%t 铂铑 13 -铂 WRB R 0-1600℃ ±0.25%t 铂铑 10 -铂 WRP S 0-1600℃ ±0.25%t 铂铑 30 -铂铑 6 WRR B 0-1800℃ ±0.25%t
注:t为感温元件实测温度值(℃)
热电偶时间常数 热惰性级别 时间常数(秒) 热惰性级别 时间常数(秒) Ⅰ 90-180 Ⅲ 10-30 Ⅱ 30-90 Ⅳ <10 热电偶公称压力:一般是指在工作温度下保护管所能承受的静态外压而破裂。 热电偶最小插入深度:应不小于其保护套管外径的8-10倍(特列产品例外) 绝缘电阻:当周围空气温度为15-35℃,相对湿度<80%时绝缘电阻≥5兆欧(电压100V)。具有防溅式接线盒的热电偶,当相对温度为93± 3℃ 时,绝缘电阻≥0.5兆欧(电压100V) 高温下的绝缘电阻:热电偶在高温下,其热电极(包括双支式)与保护管以及双支热电极之间的绝缘电阻(按每米计)应大于下表规定的值。
规定的长时间使用温度(℃) 试验温度(℃) 绝缘电阻值(Ω)
≥600 600 72000 ≥ 800 800 25000 ≥1000 1000 5000
2温度变送器 选择通用型智能温度变送器如图6所示,接线端子如图7所
图6通用型智能温度变送器
图7接线端子 性能简介 输入单路或双路热电偶、热电阻信号,变送输出隔离的单路或双路线性的电流或电压信号,并提高输入、输出、电源之间的电气隔离性能。
技术特点 本产品采用了先进的数字化技术,具备了传统模拟仪表所不具备的多项先进性能,在对高、低频干扰信号的抑制方面均有着优异表现,即使在大功率变频控制系统中依然能够可靠应用,同时,数字化技术的应用彻底克服了传统温度变送器线性差的缺点,内部采用数字化调校、无零点及满度电位器、自动动态校准零点、温度飘移自动补偿等诸多先进技术,并符合IEC61000-4-4:1995中所规定的第四类(恶劣工业现场)环境对产品的抗电磁干扰要求,这一系列技术的应用使产品的稳定性及可靠性得到科学的保证。 以上各项技术领先国际先进水平.
适用性 可以与单元组合仪表及DCS、PLC等系统配套使用,在油田、石化、制造、电力、冶金等行业的重大工程中有着广泛应用。
技术参数 系统传输准确度:±0.2%×F·S 温度漂移:≤0.0015%F·S/℃ 冷端温度补偿准确度:±0.1% 测量热电阻时允许的引线电阻:≤50Ω 工作温度:工业级标准 -10~+55℃ 电流输出允许外接的负载阻抗:4-20mA输出时0~500Ω;0-10mA输出时0~1KΩ需要更大的负载能力请在订货时说明。 电磁兼容:符合IEC61000-4-4:1995中所规定的第四类(恶劣工业现场)环境对产品的抗电磁干扰要求. 输入/输出/电源/通讯/双路间绝缘强度:≥1500V.ac 储运环境温度:-40~+80℃ 相对湿度:10-90%RH(40℃时) 供电电源:交流: AC 95~265V 直流:DC12V~32V(反接保护) 输入功率:0.9~1.8W(与型号有关,详见本手册附录中关于输入功率的计算方法) 通讯接口:RS232 或 RS485,MODBUS软件协议(选配)。 外形尺寸:宽×高×深:22.5×100×115mm 净 重:140g±20g
型 号 说 明 SK-WD- × × × × 通用型温度变送器
输入回路 缺省为单回路 D 双回路(相互隔离)
第一路输出 1 4-20mA 2 1-5V 3 0-10mA 4 0-5V 5 0-10V
第二路输出 缺省为无第二输出 1 4-20mA 2 1-5V 3 0-10mA 4 0-5V 5 0-10V
供电方式 缺省为交流220V D 直流24V
3流量传感器 选用SKLUCB型插入式涡街流量计如图8所示 图8SKLUCB型插入式涡街流量计 工作原理 按国际标准化组织IS07145(在环形截面封闭管道中的流体流量测定—在截面一点的速度测量法),采用埋入压电晶体的涡街测速探头,插入大口径工业管道内,将卡门旋涡频率转换为与流量成正比的电流或电压脉冲信号或4~20mADC电流信号。 仪表特点
1、可测量蒸汽,气体,液体的体积流量和质量流量; 2、无机械运动部件,测量精度高,结构紧凑维护方便;
3、压力损失小,量程范围宽;范围度达1:25; 4、采用消扰电路和抗振传感头; 5、采用消扰电路和抗振传感头,使仪表具有一定抗环境振动性能;