当前位置:文档之家› 宋强-柔性直流输电技术讲座

宋强-柔性直流输电技术讲座

清华大学电机系
传输线路:架空线,10km 换流器:IGBT串联,2电平。
44
赫尔斯杨换流站及技术指标
运行指标
(1)噪声:站墙外40m处≤40dB,不超过设计值。
(2)无线电干扰:符合要求。
(3)谐波:10kV母线THD 3.8% ≤5.0%(高通滤波器容
量为换流器容量1/10)
Uc
δ
UL
I
Us
P<0, 逆变模式
采用VSC的HVDC系统
9
清华大学电机系
基本原理
以电压源换流器、自关断器件和脉宽调制(PWM)为基础 的新型直流输电技术。
CIGRE和IEEE将其命名为VSC-HVDC——电压源换流器高 压直流输电。
ABB—HVDC Light/轻型直流输电,注册商标; SIEMENS—HVDC PLUS (Power Link Universal System )/新型直流输电,注册商标 国内—HVDC Flexible/柔性直流输电。
S4
0110
VO=0
25
+
V dc
VO
-
O
+
V dc
-
S1
D B1
S2
VO
S3 D B2
S4
0011
VO=-Vdc
0 -Vdc 清华大学电机系
多电平变流器
26
由两电平、三电平到更多电平数目
清华大学电机系
Modular Multilevel Converter (模块化多电平变流器27)
清华大学电机系
6 默里连接工程
±150kV 200MW
7 美国长岛
±150kV 330MW
8 挪威海上平台
±60kV
2×41MW
9 波罗的海联网
±150kV
10
北海海上Valhall油 田平台
–150kV
11 德国风电并网
±150kV
1清22华0美1国大2T学ra-n3电sB-a机y20系 ±200kV
350MW 78MW 400MW 400MW
容量范围 ☆☆ ☆ ☆ ☆ ☆
无功补偿 ☆
☆☆ ☆ ☆ ☆
功率损耗 ☆☆ ☆ ☆ ☆ ☆ ☆ ☆
可控性 ☆ 传输距离 ☆ ☆
☆☆ ☆☆☆ ☆☆☆ ☆☆☆
VSC-HVDC
清华大学电机系
输送方式比较-传输距离与容量
清华大学电机系
16
大功率电力电子
kV/kA
机械开关
• 高压 • 大电流
Power
+
=
V/mA
列入863智能电网研究课题
42
清华大学电机系
43
清华大学电机系
1)赫尔斯杨 - 试验工程
1997年,ABB在瑞典中部的赫尔斯杨-格兰斯堡 改造一条原有的50kV架空线路,接入10kV交流 系统,完成启动、功率调整和故障等试验。
额定功率:3MW 交流电压:10kV 直流电压:±10kV
2002年建成投运。
长岛工程 – ABB第二代技术
南方电网 技术研究
中心
直流电压、电流提升到新等级,实现 138kV/345kV不同电压等级连接
首次采用IGBT 3电平换流器结构(非背靠背),改 善谐波状况,增大换流器容量。
额定容量: 330 MW 直流电压: ± 150 kV 直流电流: 1175 A 传输电缆: 2 x 40 km,埋于2米深海床下,不影响海床
清华大学电机系
45
2)哥特兰 - 第一个商业工程
ABB/1999年 哥特兰岛南部风能丰富,中部需要电能 。输电线路经过鸟类保护区,海岛交流系 统较弱,出于环境和技术考虑,选择柔性 直流输电、地下电缆方式送电。
清华大学电机系
46
哥特兰工程技术参数
传输线路:地下电缆,70km 换流器:IGBT串联,2电平。 70kV THD:BÄCKS 1.5%,NÄS 1.3% 损耗:每年运行6000小时,其中 2000小时满载。SVC模式时为4%, 传输模式时为11%。 无线电干扰:基本满足要求(围墙外 30m处测量) 可听噪声:100米处37dB(<40dB )
电网互联,电力交易
2电平 电缆67公里 2005
海上平台供电
2电平 电缆105公里
2电平 电缆292公里
2电平 电缆100公里
多电平 (MMC)
电缆88公里
2007
非同步联网
预计2010年
电机变频驱动,提高 效率
预计 9月
2009

世界最大风电场并网
预计 3月
2010

电网互联,城市20供电
器件的直接串联
清华大学电机系
47
哥特兰工程的意义
优点
匹配风能动态变化,稳定电压; 避免恶化电能质量; 交直流并联协调运行,提高动态稳定性能。
哥特兰工程起到很好的示范作用,该工程的实施 表明基于电压源换流器直流输电技术已日渐成熟, 具备良好的工业应用前景。
此后,柔性直流输电技术得到了较快发展,新建 工程增多,容量和电压等级进一步提高。
清华大学电机系
直流输电 VS 交流输电?
3
输电线路
造价低、损耗小 线路有功损耗和无功损耗小
不存在稳定性问题
可实现非同步联网
可实现功率的灵活调节
清华大学电机系
常规高压直流输电原理
4
晶闸管技术,Line Commutated Converter(LCC-HVDC)
清华大学电机系
孤立负荷送电(海岛等)
海上平台供电
城市配网
非同步电网联网
清华大学电机系
引自ABB参考资料
输送方式比较-成本
13
引自ABB参考资料
清华大学电机系
输送方式比较-损耗
清华大学电机系
14
几种主要的电力传输方式
15
HVAC HVDC
HVAC 电缆造价 ☆
HVDC VSCHVDC
☆☆☆ ☆☆☆
清华大学电机系
38 引自ABB参考资料 引自ABB参考资料
VSC-HVDC与常规直流换流站相比
VSC-HVDC
节 约
空 间
LCC-HVDC
清华大学电机系
电缆
40
Land Cable
Submarine Cable
Deep-sea Cable
清华大学电机系
海底电缆铺设
41
清华大学电机系
发展历史
1990年,加拿大McGill大学的Boon-Teck Ooi等人提 出了基于脉宽调制技术电压源换流器的直流输电概念。
21
ABB公司的两电平VSC-HVDC及其串联IGBT阀
清华大学电机系
器件的直接串联
22
可通过器件的串联实现尽可能高 压输出
实现中存在多方面困难
安全性:静、动态均压 结构易实现性:杂散参数、安
装、维护
引自ABB参考资料
清华大学电机系
ABB的StakPakTMIGBT模块
23
清华大学电机系
Electronics
• 高速 • 电子控制 • 低损耗 • 长寿命
17
kV/kA
V/mA
Power Electronics
清华大学电机系
大功率电力电子器件的发展
18
IGBT
IEGT
Thyristor
GTO
IGCT
由半控到全控 电压、电流等级逐渐提高(几kV/几kA) 开关速度由低到高(50/60Hz 到几kHz)
清华大学电机系
2012-3-20
10
VSC-HVDC(轻型直流输电)
不需借助受端电网换相,对受端电 网无容量要求
无换相失败问题 PWM技术,谐波电流小 快速独立控制有功无功传递 故障隔离
. . .
清华大学电机系
11
VSC-HVDC的典型应用

风电场(或其它新能源发电)接入
12
MMC变流器工作原理
28
S1=On, S2=Off : Vx=Vc
S1=Off, S2=On: Vx=0
直流电压控制 Vd=n×VC 交流电压控制 VAC=V1+V2+…Vn
清华大学电机系
Transbay 400MVW HVDC PLUS(MMC)
29
清华大学电机系
Transbay 400MVW HVDC PLUS(MMC)
生物
清2华01大2学-3电-机20系
50
长岛工程电网结构
南方电网 技术研究
中心
353 to Southington
4T 7T
5T 8T 376 to Haddam Neck
9T New
RM **
Converter
30
清华大学电机系
VSC-HVDC变流器拓扑结构技术比较
31
清华大学电机系
柔性直流输电系统的静态特性
32
Qconv (Capacitive Mode)
Low AC Voltage High AC Voltage
Limitation in capacitive mode
Pconv (Inverter Mode)
1997年,ABB在瑞典中部的赫尔斯杨进行了世界上第一 个VSC HVDC工业试验。
1999年,ABB哥特兰工程投入商业运行。 2002年,ABB美国长岛工程直流电压达到±150kV、输
送容量达到330MW。 2007年,西门子美国跨湾工程采用多电平换流器,直流
电压达到±200kV、输送容量达到400MW。 2007年,中国在上海启动示范工程。 2010年,大型风电场的柔性直流输电
相关主题