南京工程学院远距离输电技术概论班级:输电112学号: 206110618姓名:钱中华2014年12月10日目录0.引言 (3)1.研究与应用现状 (3)2.原理 (4)3.特点 (5)4.关键技术 (6)5.发展趋势 (7)6.小结 (9)柔性直流输电技术0.引言随着能源紧缺和环境污染等问题的日益严峻,国家将大力开发和利用可再生清洁能源,优化能源结构。
然而,随着风能、太阳能等可再生能源利用规模的不断扩大,其固有的分散性、小型性、远离负荷中心等特点,使得采用交流输电技术或传统的直流输电技术联网显得很不经济。
同时海上钻探平台、孤立小岛等无源负荷,目前采用昂贵的本地发电装置,既不经济,又污染环境。
另外,城市用电负荷的快速增加,需要不断扩充电网的容量,但鉴于城市人口膨胀和城区合理规划,一方面要求利用有限的线路走廊输送更多的电能,另一方面要求大量的配电网转入地下。
因此,迫切需要采用更加灵活、经济、环保的输电方式解决以上问题。
柔性直流输电技术即电压源换流器输电技术(VSC HVDC)采用可关断电力电子器件和PWM 技术,是一种新型直流输电技术,它能弥补传统直流输电的部分缺陷,其发展十分迅速。
为了进一步推动柔性直流输电技术在我国的研究和应用,本文结合ABB 公司几个典型应用工程,详细介绍了柔性直流输电的系统结构、基本工作原理和与传统直流输电相比的技术优势,并就我国的实际情况讨论了柔性直流输电在我国多个领域,尤其是风电场的应用前景。
1.研究与应用现状自1954 年世界上第一个直流输电工程(瑞典本土至GotIand 岛的20MW、100kV 海底直流电缆输电)投入商业化运行至今,直流输电系统的换流元件经历了从汞弧阀到晶闸管阀的变革。
然而由于晶闸管阀关断不可控,目前广泛应用的基于PCC的传统直流输电技术有以下固有缺陷:1只能工作在有源逆变状态,且受端系统必须有足够大的短路容量,否则容易发生换相失败;2换流器产生的谐波次数低、谐波干扰大;3换流器需吸收大量的无功功率,需要大量的滤波和无功补偿装置;4换流站占地面积大、投资大。
因此,基于PCC的常规直流输电技术主要用于远距离大容量输电、海底电缆输电和交流电网的互联等领域。
其先研究主要发展有一下几项基本技术:1.高压大容量电压源变流器技术模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图 1 所示。
桥臂中的每个子模块可以独立控制,每相上、下两个桥臂的电压和等于直流母线电压。
交流电压通过控制每相中两个桥臂的子模块旁路比例来叠加实现,桥臂中的子模块越多,交流电压的谐波越小。
与两电平变流器相比,由于不需要每一相上的所有器件在较高频率下同时动作,模块化多电平大大降低了器件的开关损耗。
图1 模块化多电平变流器拓扑示意图2.混合多电平技术(Hybrid Multilevel Technology, HMT)另一种可被应用于柔性直流输电系统的变流器叫混合多电平变流器。
该技术将开关器件和半桥或全桥构成的多电平单元组合构成一种新的变流器拓扑;由多电平单元产生电压波形,再由串联的开关器件将电压波形接入交流或直流网络。
混合多电平变流器的一种典型的电路拓扑如图 2 所示,每一相由 IGBT 与多电平单元串联构成桥臂。
该拓扑可以实现串联 IGBT 的零电压动作,同时多电平单元可以降低串联 IGBT 的电压应力,从而减少 IGBT 的串联个数。
图2 混合多电平变流器拓扑示意图3.两电平级联型变流器(Cascaded Two-Level Converter, CSL)两电平级联型变流器的原理和模块化多电平变流器类似,使用另一个名称是为了强调换流阀中使用了串联压接式 IGBT。
两电平级联型变流器利用 IGBT 压接技术将两电平电压源型变流器扩展到级联型多电平变流器。
典型的拓扑如图 3 所示,每相拓扑分为两个桥臂,分别与直流母线的正负极相连。
每个桥臂由多个两电平单元构成,每个单元可独立控制以产生需要的交流基波电压,实现对有功功率和无功功率的输出控制。
图3两电平级联型变流器4.大规模多节点模块化多电平系统实时动态仿真技术实时数字仿真系统已广泛应用于传统超高压系统的在线仿真研究,这类数字仿真系统硬件通常采用基于共享存储器的多 CPU 并行计算机,核心程序包含丰富的电力系统及控制系统元器件模型。
以 RTDS 为例,其仿真步长为20-70微秒,包含的数据转换软件能将PSS/E和EMTDC格式的数据和模型转化为RSCAD格式,可实时仿真大型交直流混合系统的电磁和机电暂态现象。
但对基于 MMC 的柔性直流输电系统来说,由于其变流器由数百甚至数千个独立控制的电压源子模块组成,在运行过程中,每个子模块的投切都是随机的,难以对其出口特性进行等值,且求解等值网络变量的导纳矩阵规模过大,精度难以保证。
此外,变流器每个子模块与阀基控制设备之间通过独立的光纤进行通信,信道多、数据量大,难以通过现有的仿真接口进行转换,因此需要开发新的仿真系统。
在此背景下,中国电力科学研究院开发了双站多电平 MMC-HVDC 系统的动模仿真平台的研究。
该系统可用于精确验证具有较多电平数(40 以上)换流阀的 MMC-HVDC 系统及控制保护平台设计,从而检验工程的主电路参数设计、控制器性能和交直流系统的动态特性。
动模仿真平台主要由换流站交直流场(包括换流变压器、交直流开关场)、多电平电压源变流器、交直流线路数模转换接口、阀基控制器 VBC 等组成。
动模仿真平台的创新有:以弱功率电子器件实现了对大功率 MMC 子模块的模拟,具有优良的外特性和控制性能;首次实现了 49 电平调制的模块化多电平变流器;实现了对 VBC和 PCP的实时闭环在线验证;实现了对电压电流平衡控制算法的验证;实现了对启停控制流程、运行方式切换的试验;实现了对直流和交流故障控制保护算法的验证。
基于通过对双端柔性直流输电工程的故障态仿真,得出了相应的试验结果,并与电磁暂态仿真软件PSCAD 的仿真结果进行了对比,证明了该系统为 MMC-HVDC 的动态特性和控制保护平台提供实时在线验证的有效性。
5.多端柔性直流输电技术多端直流输电系统(Multi-Terminal Direct Current,MTDC)是指含有多个整流站或多个逆变站的直流输电系统,其最显著的特点在于能够实现多电源供电、多落点受电,提供一种更为灵活、快捷的输电方式。
传统的 MTDC 输电系统采用基于晶闸管的电流源型变流器,其只能依靠电网电压的过零变化换流,只能工作在有源逆变状态,且需要电提供大量的换相所需无功功率,这些固有缺陷大大影响了整个 MTDC 系统的运行性能,降低整个 MTDC 系统的适用范围。
图4 三端柔性直流输电系统示意目前国际上关于多端柔性直流输电系统的研究中,不同应用场合下的变流器设计是一个研究热点,包括:建立多端柔性直流系统的动态模型;多种基于坐标变换的控制器设计和仿真验证;在各种应用场合多端柔性直流的仿真精度的提高和仿真时间缩短等方面。
柔性直流输电技术由电压源型变流器构成,其对交流侧故障的鲁棒性较强;当发生交流侧永久故障时,多端柔性直流输电系统在设计时一般已满足 N-1 法则,可以通过故障换流站退运,以达到新的稳定运行状态,此时需要注意的是过渡过程中直流线路的过压抑制。
当故障发生在直流侧则有很大不同,由于 IGBT 反并联二极管的续流作用,会对换流阀产生很大的冲击。
国内学者对多端柔性直流输电技术的研究主要集中在系统控制保护策略设计及其仿真验证等方面。
与国际先进水平相比,我国对多端柔性直流输电技术的研究尚存在较大差距。
一方面,研究内容不够全面;另一方面,已有研究开展不够深入。
目前的研究成果鲜有从基本数学模型入手,以建立多端柔性直流输电各子系统模型及整体模型为基础,系统地讨论控制器结构及设计思路。
而对柔性直流输电保护技术的研究一般都是基于双端系统,以稳定运行时离散控制器为基础,通过设计双序电流控制器,实现柔性直流换流站在交流侧暂态故障期间的持续运行,然而对直流侧故障时多端柔性直流系统的运行特性的研究并不多见。
多端柔性直流输电技术的研究可以参照双端系统已有成果,在此基础上建立基于不同变流器技术下多端网络的等效数学模型;对比分析不同控制策略下各换流站外特性;设计满足系统稳定运行的多端柔性直流输电系统协调控制策略;系统地研究多端柔性直流输电系统交直流侧故障特性以及相应保护动作机制。
柔性直流输电技术的应用截至 2011 年 8 月,世界上已经投运的柔性直流输电工程共有 13 条,仅 2011 年就已投运 3 条,在建柔性直流输电工程 12 条。
而目前在的柔性直流输电工程最大工程输送容量已达到 2000MW,总输送容量超过 10000MW,相当于前十几年已建工程容量的 4 倍多,这些工程均显示了发达国家对于柔性直流输电在可再生能源利用和智能电网发展中所起作用的重视。
1.国外应用规划欧洲的多个国家都已经建设和规划了大量的海上风电场,其容量都在数百兆瓦等级,并且已经有部分使用了柔性直流输电技术实现系统的接入。
英国国家电网输电公共有限公司(NGET plc)规划到 2025 年建设柔性直流近 50 条,以鼓励和促进新能源的发展。
目前德国在建用于海上风电接入的柔性直流输电项目共 4 项,总容量约 2600MW。
北欧地区规划到 2030 年通过多端柔性直流(MTDC)实现海上风电的接入,柔性直流输电被认为是最适合的实现手段。
图 5 英国柔性直流规划图6 北欧地区海上直流线路规划美国电科院(EPRI)也推出了其智能电网的发展规划蓝图,在未来 20年,美国计划建设 60 多条柔性直流输电线路。
图 7 美国地区发展规划2.国内应用规划截止 2010 年我国风电装机容量超过 3000 万千瓦,预计 2020 年将突破 1.5 亿千瓦。
这些风能资源集中度高,并且很多都远离负荷中心,需要使用先进的输电技术进行并网接入和电力传输。
柔性直流输电技术以其显著的技术特点和优势必将取得越来越广泛的关注,市场应用前景极其广阔。
2.1 城市供电应用国家电网公司规划了用于大型城市供电的±300kV/500MW 柔性直流输电工程,用来提升大连城市电网的供电可靠性与供电质量,保障大连城市用电的安全。
大连工程的建成将成为世界范围内最大容量的城市供电柔性直流输电工程,目前已完成工程的可行性研究与工程设计方案。
图8 大连城市供电柔性直流输电工程初步设计2.2 岛屿供电应用国家电网公司启动了“柔性直流海岛联网关键技术与示范工程前期研究”,以提高舟山岛屿的风电接入能力和海岛供电的可靠性,有效保障海岛居民的用电质量和生活水平。
此工程将成为世界范围内第一个多端柔性直流输电工程。
图9 舟山海岛互联柔性直流输电工程接入方案表1舟山海岛互联柔性直流输电工程初步设计2.3 可再生能源接入为了更好的解决海上/陆地风电场发电并网带来的电网安全稳定运行及电能质量等问题,以江苏、山东、浙江、福建等海上和岛屿风电场及内蒙、甘肃等陆地风电场的集中式并网技术为研究方向,以百兆瓦和千兆瓦级海上/陆地风电场柔性直流并网工程为重点,全力助推我国经济社会的绿色、环保、可持续发展。