当前位置:文档之家› 电磁波传播基本知识及天线原理

电磁波传播基本知识及天线原理

极化扭转:
一、电磁波传播基础知识
空间分集:单极化天线
极化分集:双极化天线
接 收 信 号 强 度
接收距离
一、电磁波传播基础知识
绕射传播
电波在传播途径上遇到障碍物时,总会力 图绕过障碍物,再向前传播。这种现象叫 做电波的绕射。
信号质量受到影响的程度不仅和接收天线 距建筑物的距离及建筑物的高度有关,还 和频率有关,频率越高,建筑物越高、越 近,影响越大。相反,频率越低,建筑物 越矮、越远,影响越小。 因此,选择基站场地以及架设天线时,一定要考虑到绕射传播可能产生的 各种不利影响。 (要点:近处、水平/垂直主波束+/-10dB内无遮挡)
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标
下零点填充 方向图圆度
三、天线主要性能参数
垂直面波束宽度及电下倾角精度:决定了网络覆盖区中距离向性能的
一般来说,在工作频带宽度内的各个频率点上,天线性能是有差异的。因此, 在相同的指标要求下,工作频带越宽,天线设计难度越大。
三、天线主要性能参数
辐射参数
主瓣; 副瓣; 半功率波束宽度; 增益; 波束下倾角; 前后比; 交叉极化鉴别率; 上旁瓣抑制; 下零点填充;
天线辐射方向图
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
京信通信 未来无限延伸
一、 电磁波传播基础知识 二、天线辐射原理 三、天线主要性能参数 四、天线分类
二、天线辐射原理
天馈系统简介
天线调节支架
抱杆
接头密封件 绝缘密封胶带,PVC绝缘胶带
天线
接地装置
室外馈线
馈线卡 馈线过线窗
基站天线在整个网络建设中占经费比例不到3%,但 它对网络性能的影响却超过60%。 在实际网优工作中,通过天线的选择与调整是简单但收 效最大的方法。强化天线的性能和品质起着四两拨千斤 的作用。
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标
每个扇区的天线在最大辐射方向偏离±60º时到达覆盖边缘,需要切换到相邻 扇区工作。在±60º的切换角域,方向图电平应该有一个合理的下降。电平下降太 多时,在切换角域附近容易引起覆盖盲区掉话;电平下降太少时,在切换角域附近 覆盖产生重叠,导致相邻扇区干扰增加。
理论仿真和实际应用结果表明:在密集建筑 的城区,由于多径反射严重,为了减小相邻扇区 之间的相互干扰,在±60º的电平下降至-10dB左 右为好,反推半功率宽度约为65º;而在空旷的郊 区,由于多径反射少,为了确保覆盖良好,在 ±60º的电平下降至-6dB 左右为好,反推半功率 宽度约为90º。 水平面波束宽度、波束偏斜及方向图一致性决定 了覆盖区方位向的性能好坏。
Stock Code: 2342.HK
电磁波传播基本知识及天线原理
京信通信 未来无限延伸
一、 电磁波传播基础知识 二、天线辐射原理 三、天线主要性能参数 四、天线分类
一、电磁波传播基础知识
无线电波的定义
无线电波是一种信号和能量的传播形式,在传播过程中,电场和磁场在 空间中相互垂直,且都垂直于传播方向。
进得去, 出得来。
二、天线辐射原理
天线的辐射原理

线
的 辐
~



二、天线辐射原理
天线半波振子
半波振子是天线的基本辐射单元,波长越长,天线半波振子越大。
1/4 波长 1/4 波长
1/2 波长
半波振子 (电长度)
水平面
垂直面
二、天线辐射原理
半波振子示例:
二、天线辐射原理
天线辐射方向图
用来表述天线在空间各个方向上所具有的发射 和接收电磁波的能力。一般为三维辐射立体图。
主馈线(7/8“) 室内超柔馈线
防雷保护器 基站主设备
二、天线辐射原理
天线的定义
能够有效地向空间某特定方向辐射电磁波或能够有效地 接收空间某特定方向来的电磁波的装置。
能量转化
电缆内高频电流

效率要求---追 求高效率
线

无线电 设备

定向辐射(接收)
方向图要求---满足特定空间分布要求
空间电 磁波
好坏。 观察图 3-1的垂直面方向图。波束应该适当下倾,下倾角度最好使得最大辐
射指向图3-1 中目标服务区的边缘。如果下倾太多(黄色),服务区远端的覆盖 电平会急剧下降;如果下倾太少,覆盖在服务区外,且产生同频干扰问题。
图 3-1 垂直面波束下倾角的设置
三、天线主要性能参数
电下倾角度:最大辐射指向与天线法线的夹角。
零点填充 方向图圆度
三、天线主要性能参数
交叉极化比:极化分集效果优劣的指标
为了获得良好的上行分集增益,要求双极化天线应该具有良好的正交极化特性,即在 ±60º的扇形服务区内,交叉极化方向图电平应该比相应角度上的主极化电平有明显的 降低,其差别(交叉极化比)在最大辐射方向应大15dB,在±60º内应大于10dB,最低 门槛也应该大于7dB,如图所示。如此,才可以认为两个极化接收到的信号互不相关。
E、H、S 满足右手螺 旋
特例: 垂直的线极 化
随时间变化 随空间变化
一、电磁波传播基础知识
无线电波的传播方向
正交特性;电生磁、磁生电。
一、电磁波传播基础知识
无线电波的波长、频率与传播速度的关系
其中:波长 λ= C/f (式中,C为光速,f为工作频率,λ为波长。)
要点
在相同的介质中,不同频率下,天线的工作波长不同。频率越高, 波长越短。
度下降至一半时的角域宽度,也叫3dB波束宽度。 水平面的半功率波束宽度叫水平面波束宽度;垂直面的半功率波束宽
度叫垂直波束宽度。
3dB 波束宽度 峰值 - 3dB
60° (eg)
峰值 峰值 - 3dB
10dB 波束宽度
峰值 - 10dB
120° (eg)
峰值
峰值 - 10dB
三、天线主要性能参数
水平面波束宽度
特殊应用中才会考察垂直面方向图的前后比,
比如基站背向区域有超高层建筑物。
后向功率
前向功率
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
单个辐射单元
多单元阵列
二、天线辐射原理
天线辐射方向图
实际评判中是其转化成的二维平面图形,即水平 面方向图及垂直面方向图。
水平面 垂直面
二、天线辐射原理
天线组成部件
同一款基站天线有多种设计方案来实现。
设计方案涉及到天线的以下四部分:
1、辐射单元(对称振子 or 贴片[阵元]) 振子
2、反射板(底板)
? >6.5º >9º >12º
+/-1º
夹角
法线方向 最大辐射方向
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标
下零点填充 方向图圆度
三、天线主要性能参数
天线增益
系指天线在某一规定方向上的辐射功率通量密度与参考天线(通常采用理 想点源)在相同输入功率时最大辐射功率通量密度的比值。
P1
P0 天线
P2
理想辐射单元
G = 10log(P1/P2)
三、天线主要性能参数
天线增益、方向图和天线尺寸之关系
天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天 线重要的参数之一。 天线增益越高,方向性越好,能量越集中,波瓣越窄。 增益越高,天线长度越长。
37
三、天线主要性能参数
增益:影响覆盖距离指标
合理选择增益!!!
提高天线增益,覆盖的距离增大,但同时会压窄波束宽度,导致覆盖的均匀性变差。天线增 益的选取应以波束和目标区相配为前提,为了提高增益而过分压窄垂直面波束宽度是不可取 的,只有通过优化方案,实现服务区外电平快速下降、压低旁瓣和后瓣,降低交叉极化电平, 采用低损耗、无表面波寄生辐射、低VSWR的馈电网络等途径来提高天线增益才是正确的。
3、功率分配网络(馈电网络)
4、封装防护(天线罩)
反射板
馈电网络
天线罩
京信通信 未来无限延伸
一、 电磁波传播基础知识 二、天线辐射原理 三、天线主要性能参数 四、天线分类
三、天线主要性能参数
天线工作频率
无论天线还是其他通信产品,总是在一定的频率范围(频带宽度)内工作, 其取决于指标的要求。通常情况下,满足指标要求的频率范围即可为天线的 工作频率。
特例:线极化 垂直的、水平的
一、电磁波传播基础知识
圆极化 椭圆极化 线极化 左旋、右旋;垂直、水平
一、电磁波传播基础知识
天线极化:是指电场矢量在空间运动的轨迹。
相关主题