无约束问题最优化方法
向可以使函数值下降,只
x2
有在锐角所包含的范围搜
索才可以达到函数值下降
的目的,故坐标轮换法对 此类函数会失效。
脊线
x1
第二轮迭代,需要
x0(2) x2 (1)
依次类推,不断迭代,目标函数值不断下降,最后逼 近该目标函数的最优点。
终止准则
可以采用点距准则
注意: 若采用点距准则或函数值准则,其中采用的点应该是一轮
迭代的始点和终点,而不是某搜索方向的前后迭代点。
8.1.2坐标轮换法的计算步骤
⑴任选初始点
作为第一轮的起点 ,置n个坐标轴方向矢量为单位 坐标矢量:
已知初 始点 x(1) (1, 2, 3)T ,当 x(n1) x(1) 0.01时停止
迭代.
小结
坐标轮换法程序简单,易于掌握。但是计算效率比 较低,尤其是当优化问题的维数较高时更为严重。一 般把此种方法应用于维数小于10的低维优化问题。
对于目标函数存在
“脊线”的情况,在脊线
的尖点处没有一个坐标方
对于n维优化问题,如果只利用函数值求最优值的解法,称 为直接搜索法;
解析法的收敛速率较高,直接法的可靠性较高。
8.1 坐标轮换法
坐标轮换法属于直接法,既可以用于无约束优化问 题的求解,又可以经过适当处理用于约束优化问题求 解。
坐标轮换法是每次搜索只允许一个变量变化,其余 变量保持不变,即沿坐标方向轮流进行搜索的寻优方 法。它把多变量的优化问题轮流地转化成单变量(其 余变量视为常量)的优化问题,因此又称这种方法为 变量轮换法。此种方法只需目标函数的数值信息而不 需要目标函数的导数。
第8章 无约束问题最优化方法
➢无约束优化理论研究开展得较早,构成的优化方法巳很多 ,也比较成熟,新的方法仍在陆续出现。本章的内容与目的 是讨论几个常用无约束优化方法的基本思想、方法构成、迭 代步骤以及终止准则等方面问题。
➢无约束优化方法总体分成两大类型:解析法或称间接法、 直接搜索法或简称直接法;
在n维无约束优化方法的算法中,用函数的一阶、二价导数进行求解的算法, 称为解析法;
一、坐标轮换法的迭代过程
如 图 , 以 二 次 函 数 为 例 。
标长轴任1(的取1) ,方一得向初第e始1一作点轮一x(的维0)作第搜为一索第个,一迭用轮代一的点维始优点化x方0 (1法),先确沿定第最一优坐步 x1(1) =x0(1) + 1(1) e1,
搜然索后,以确定x1步(1)为长新2起(1) ,点得,第沿一第轮二的坐第标二轴个的迭方代向点e2作一维 x2(1) =x1(1) + 1(1) e2
入口
给定 x(0),ε
k←1 i←1
x(k) i
x(0)
沿ei方向一维搜索αi
xi(k) xi(k
-
i=n?
+
-
x(k) n
x(k) 0
?
+
x*x
F* F(x*)
k←k+1
x
(0)
x
(k) n
出口
8.1.3 计算举例
例 8-1 用变量轮换法求解 min f (x) 3x12 2x22 x32 ,
⑵按照下面迭代公式进行迭代计算
k为迭代轮数的序号,取k=1,2,……; i为该轮中一维搜索的序号,取i=1,2,……n 步长α一般通过一维优化方法求出其最优步长。 ⑶按下式判断是否中止迭代
最优解
如满足,迭代中止, 并输出最优解
否则,令k←k+1 返回步骤(2)
坐 标 轮 换 法 的 流 程 图
i←i+1