当前位置:文档之家› 封装与微组装

封装与微组装

摘要:近年来,封装与微组装技术进入了超高速发展时期,新的封装和组装形式不断涌现,而其标准化工作已经严重滞后,导致概念上的模糊,这必然会对该技术的发展造成影响。

力求将具有电子行业特点的封装与微组装技术的内涵和特点加以诠释,并对其发展提出见解和建议,以促进该技术的发展。

关键字:封装、微组装、发展、BGA、SOP、FC、CSP、MCM、集成电路、系统级封装正文:一、电子产品技术概述第一代电子产品以电子管为核心。

四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。

五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。

集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。

随着电子元器件向小型化、复合化、轻量化、多功能、高可靠、长寿命的方向变革,从而相继出现了各种类型的片式电子元器件(SMC/SMD),导致了第四代组装技术即表面组装技术(SMT)的出现,在世界上引发了一场电子组装技术的新革命。

在国际上,片式电子元器件应用于电子整机,始于用年代,当时美国IBM公司首先把片式电子元器件用于微机。

目前世界上发达国家已广泛采用表面贴装技术,片式元器件已成为电子元器件的主体,其中片式电容、片式电阻、片式电感以及片式敏感元件的需求量约占片式元件的90%,世界上发达国家电子元器件片式化率己高达80%以上,全世界平均亦在40%,而我国仅为约30%,可以预见,加入WTO后,片式元件产业的市场竞争将更趋激烈。

实现了批量生产全系列片式电容器、片式电阻器、片式电感器,开始摆脱一代代重复引进的被动局面,并逐步走上自主发展的道路。

2001年片式电容器、片式电阻器、片式电感器等片式元件市场低迷,价格普遍下调15%~20%,对国内元件生产企业造成了一定的影响。

二、集成电路与微电子封装技术集成电路(integrated circuit)是一种微型电子器件或部件。

采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。

它在电路中用字母“IC”表示。

集成电路发明者为杰克·基尔比(基于硅的集成电路)和罗伯特·诺伊思(基于锗的集成电路)。

当今半导体工业大多数应用的是基于硅的集成电路。

集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。

它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。

用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。

集成电路按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大类。

模拟集成电路又称线性电路,用来产生、放大和处理各种模拟信号(指幅度随时间变化的信号。

例如半导体收音机的音频信号、录放机的磁带信号等),其输入信号和输出信号成比例关系。

而数字集成电路用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号。

例如3G手机、数码相机、电脑CPU、数字电视的逻辑控制和重放的音频信号和视频信号等)。

现代微电子封装的基本概念,定义,分类及发展历史;各级封装技术的内涵和各种封装体的基本构造,其中包括DIP,QFP,BGA,FCBGA, CSP,TAB等封装形式。

还将通过各种现场生产过程中的实际图片等讲解各级封装的工艺,技术及相关的理论,使同学对整个封装技术有一个较为全面的了解。

在封装材料方面,本课程将阐述金线,塑封树脂,引线框架,有机基板,焊接材料等的性能,要求及制造技术。

电路产业已成为国民经济发展的关键,而集成电路设计、制造和封装测试是集成电路产业发展的三大产业之柱。

这已是各级领导和业界的共识。

微电子封装不但直接影响着集成电路本身的电性能、机械性能、光性能和热性能,影响其可靠性和成本,还在很大程度上决定着电子整机系统的小型化、多功能化、可靠性和成本,微电子封装越来越受到人们的普遍重视,在国际和国内正处于蓬勃发展阶段。

本文试图综述自二十世纪九十年代以来迅速发展的新型微电子封装技术,包括焊球阵列封装(BGA)、芯片尺寸封装(CSP)、圆片级封装(WLP)、三维封装(3D)和系统封装(SIP)等项技术。

介绍它们的发展状况和技术特点。

同时,叙述了微电子三级封装的概念。

并对发展我国新型微电子封装技术提出了一些思索和建议。

本文试图综述自二十世纪九十年代以来迅速发展的新型微电子封装技术,包括焊球阵列封装(BGA)、芯片尺寸封装(CSP)、圆片级封装(WLP)、三维封装(3D)和系统封装(SIP)等项技术。

介绍它们的发展状况和技术特点。

同时,叙述了微电子三级封装的概念。

并对发展我国新型微电子封装技术提出了一些思索和建议。

微电子封装,首先我们要叙述一下三级封装的概念。

一般说来,微电子封装分为三级。

所谓一级封装就是在半导体圆片裂片以后,将一个或多个集成电路芯片用适宜的封装形式封装起来,并使芯片的焊区与封装的外引脚用引线键合(WB)、载带自动键合(TAB)和倒装芯片键合(FCB)连接起来,使之成为有实用功能的电子元器件或组件。

一级封装包括单芯片组件(SCM)和多芯片组件(MCM)两大类。

三级封装就是将二级封装的产品通过选层、互连插座或柔性电路板与母板连结起来,形成三维立体封装,构成完整的整机系统,这一级封装应包括连接器、迭层组装和柔性电路板等相关材料、设计和组装技术。

这一级也称系统级封装。

所谓微电子封装是个整体的概念,包括了从一极封装到三极封装的全部技术内容。

我们应该把现有的认识纳入国际微电子封装的轨道,这样既有利于我国微电子封装界与国外的技术交流,也有利于我国微电子封装自身的发展。

三、集成电路封装知识电子封装是一个富于挑战、引人入胜的领域。

它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。

封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。

按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。

封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。

什么是电子封装 (electronic packaging)? 封装最初的定义是:保护电路芯片免受周围环境的影响(包括物理、化学的影响)。

所以,在最初的微电子封装中,是用金属罐 ( metal can) 作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。

但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。

通常认为,封装主要有四大功能,即功率分配、信号分配、散热及包装保护,它的作用是从集成电路器件到系统之间的连接,包括电学连接和物理连接。

目前,集成电路芯片的I/O线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接;芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重;由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。

金属封装是半导体器件封装的最原始的形式,它将分立器件或集成电路置于一个金属容器中,用镍作封盖并镀上金。

金属圆形外壳采用由可伐合金材料冲制成的金属底座,借助封接玻璃,在氮气保护气氛下将可伐合金引线按照规定的布线方式熔装在金属底座上,经过引线端头的切平和磨光后,再镀镍、金等惰性金属给与保护。

在底座中心进行芯片安装和在引线端头用铝硅丝进行键合。

组装完成后,用10号钢带所冲制成的镀镍封帽进行封装,构成气密的、坚固的封装结构。

金属封装的优点是气密性好,不受外界环境因素的影响。

它的缺点是价格昂贵,外型灵活性小,不能满足半导体器件日益快速发展的需要。

现在,金属封装所占的市场份额已越来越小,几乎已没有商品化的产品。

少量产品用于特殊性能要求的军事或航空航天技术中。

陶瓷封装是继金属封装后发展起来的一种封装形式,它象金属封装一样,也是气密性的,但价格低于金属封装,而且,经过几十年的不断改进,陶瓷封装的性能越来越好,尤其是陶瓷流延技术的发展,使得陶瓷封装在外型、功能方面的灵活性有了较大的发展。

目前,IBM的陶瓷基板技术已经达到100多层布线,可以将无源器件如电阻、电容、电感等都集成在陶瓷基板上,实现高密度封装。

陶瓷封装由于它的卓越性能,在航空航天、军事及许多大型计算机方面都有广泛的应用,占据了约10%左右的封装市场(从器件数量来计)。

陶瓷封装除了有气密性好的优点之外,还可实现多信号、地和电源层结构,并具有对复杂的器件进行一体化封装的能力。

它的散热性也很好。

缺点是烧结装配时尺寸精度差、介电系数高(不适用于高频电路),价格昂贵,一般主要应用于一些高端产品中。

相对而言,塑料封装自七十年代以来发展更为迅猛,已占据了90%(封装数量)以上的封装市场份额,而且,由于塑料封装在材料和工艺方面的进一步改进,这个份额还在不断上升。

塑料封装最大的优点是价格便宜,其性能价格比十分优越。

随着芯片钝化层技术和塑料封装技术的不断进步,尤其是在八十年代以来,半导体技术有了革命性的改进,芯片钝化层质量有了根本的提高,使得塑料封装尽管仍是非气密性的,但其抵抗潮气侵入而引起电子器件失效的能力已大大提高了,因此,一些以前使用金属或陶瓷封装的应用,也已渐渐被塑料封装所替代。

SIP是从封装体的一边引出管脚。

通常,它们是通孔式的,管脚插入印刷电路板的金属孔内。

这种形式的一种变化是锯齿型单列式封装(ZIP),它的管脚仍是从封装体的一边伸出,但排列成锯齿型。

这样,在一个给定的长度范围内,提高了管脚密度。

SIP的吸引人之处在于它们占据最少的电路板空间,但在许多体系中,封闭式的电路板限制了SIP的高度和应用。

四、BGA封装技术阵列封装(BGA)是世界上九十年代初发展起来的一种新型封装。

BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。

相关主题