高中数学解题基本方法--参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。
直线与二次曲线的参数方程都是用参数法解题的例证。
换元法也是引入参数的典型例子。
辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。
参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。
参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。
运用参数法解题已经比较普遍。
参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。
Ⅰ、再现性题组:1. 设2x=3y=5z>1,则2x、3y、5z从小到大排列是________________。
2. (理)直线x ty t=--=+⎧⎨⎪⎩⎪2232上与点A(-2,3)的距离等于2的点的坐标是________。
(文)若k<-1,则圆锥曲线x2-ky2=1的离心率是_________。
3. 点Z的虚轴上移动,则复数C=z2+1+2i在复平面上对应的轨迹图像为____________________。
4. 三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为______。
5. 设函数f(x)对任意的x、y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)的R上是______函数。
(填“增”或“减”)6. 椭圆x216+y24=1上的点到直线x+2y-2=0的最大距离是_____。
A. 3B. 11C. 10D. 22【简解】1小题:设2x=3y=5z=t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y<2x<5z;2小题:(理)A(-2,3)为t=0时,所求点为t=±2时,即(-4,5)或(0,1);(文)已知曲线为椭圆,a=1,c=11+k,所以e=-1kk k2+;3小题:设z=bi,则C=1-b2+2i,所以图像为:从(1,2)出发平行于x轴向右的射线;4小题:设三条侧棱x、y、z,则12xy=6、12yz=4、12xz=3,所以xyz=24,体积为4。
5小题:f(0)=0,f(0)=f(x)+f(-x),所以f(x)是奇函数,答案:减;6小题:设x=4sinα、y=2cosα,再求d=|sin cos|4425αα+-的最大值,选C。
Ⅱ、示范性题组:例1. 实数a、b、c满足a+b+c=1,求a2+b2+c2的最小值。
【分析】由a+b+c=1 想到“均值换元法”,于是引入了新的参数,即设a=13+t1,b=13+t2,c=13+t3,代入a2+b2+c2可求。
【解】由a+b+c=1,设a=13+t1,b=13+t2,c=13+t3,其中t1+t2+t3=0,∴ a2+b2+c2=(13+t1)2+(13+t2)2+(13+t3)2=13+23(t1+t2+t3)+t12+t22+t32=13+t12+t22+t32≥13所以a2+b2+c2的最小值是13。
【注】由“均值换元法”引入了三个参数,却将代数式的研究进行了简化,是本题此种解法的一个技巧。
本题另一种解题思路是利用均值不等式和“配方法”进行求解,解法是:a2+b2+c2=(a+b+c)2-2(ab+bc+ac)≥1-2(a2+b2+c2),即a2+b2+c2≥13。
两种解法都要求代数变形的技巧性强,多次练习,可以提高我们的代数变形能力。
例2. 椭圆x216+y24=1上有两点P、Q,O为原点。
连OP、OQ,若kOP·kOQ=-14,①.求证:|OP|2+|OQ|2等于定值;②.求线段PQ中点M的轨迹方程。
【分析】由“换元法”引入新的参数,即设xy==⎧⎨⎩42cossinθθ(椭圆参数方程),参数θ1、θ2为P、Q两点,先计算kOP·kOQ得出一个结论,再计算|OP|2+|OQ|2,并运用“参数法”求中点M的坐标,消参而得。
【解】由x216+y24=1,设xy==⎧⎨⎩42c o ss i nθθ,P(4cosθ1,2sinθ1),Q(4cosθ2,2sinθ2),则kOP ·kOQ=2411sincosθθ∙2422sincosθθ=-14,整理得到:cosθ1 cosθ2+sinθ1sinθ2=0,即cos(θ1-θ2)=0。
∴ |OP|2+|OQ|2=16cos 2θ1+4sin2θ1+16cos2θ2+4sin2θ2=8+12(cos 2θ1+cos2θ2)=20+6(cos2θ1+cos2θ2)=20+12cos (θ1+θ2)cos (θ1-θ2)=20,即|OP|2+|OQ|2等于定值20。
由中点坐标公式得到线段PQ 的中点M 的坐标为x y M M=+=+⎧⎨⎩21212(cos cos )sin sin θθθθ,所以有(x 2)2+y 2=2+2(cos θ1 cos θ2+sin θ1 sin θ2)=2,即所求线段PQ 的中点M 的轨迹方程为x 28+y 22=1。
【注】由椭圆方程,联想到a 2+b 2=1,于是进行“三角换元”,通过换元引入新的参数,转化成为三角问题进行研究。
本题还要求能够熟练使用三角公式和“平方法”,在由中点坐标公式求出M 点的坐标后,将所得方程组稍作变形,再平方相加,即(cos θ1+ cos θ2)2+(sin θ1+sin θ2)2,这是求点M 轨迹方程“消参法”的关键一步。
一般地,求动点的轨迹方程运用“参数法”时,我们可以将点的x 、y 坐标分别表示成为一个或几个参数的函数,再运用“消去法”消去所含的参数,即得到了所求的轨迹方程。
本题的第一问,另一种思路是设直线斜率k ,解出P 、Q 两点坐标再求:设直线OP 的斜率k ,则OQ 的斜率为-14k,由椭圆与直线OP 、OQ 相交于PQ 两点有: x y y kx 224160+-==⎧⎨⎩,消y 得(1+4k 2)x 2=16,即|x P |=4142+k ; x y y k x22416014+-==-⎧⎨⎪⎩⎪,消y 得(1+142k )x 2=16,即|x Q |=||8142k k +; 所以|OP|2+|OQ|2=(12+k ∙4142+k )2+(11162+k ∙||8142k k+)2=20801422++k k=20。
即|OP|2+|OQ|2等于定值20。
在此解法中,利用了直线上两点之间的距离公式|AB|=12+k AB ∙|x A -x B |求|OP|和|OQ|的长。
例3.已知正四棱锥S —ABCD 的侧面与底面的夹角为β,相邻两侧面的夹角为α,求证:cos α=-cos 2β。
【分析】要证明cos α=-cos 2β,考虑求出α、β的余弦,则在α和β所在的三角形中利用有关定理求解。
【解】连AC 、BD 交于O ,连SO ;取BC 中点F ,连SF 、OF ;作BE ⊥SC 于E ,连DE 。
则∠SFO =β,∠DEB =α。
设BC =a (为参数), 则SF =OF cos β=a2cos β,SC =SF FC 22+=(cos )()a a 2222β+=a2cos β12+cos β又 ∵BE =SF BC SC ·=a 22cos β⨯1212acos cos ββ+=a 12+cos β在△DEB 中,由余弦定理有:cos α=22222BE BD BE -=2122122222⨯+-⨯+a a a cos cos ββ=-cos2β。
所以cos α=-cos 2β。
【注】 设参数a 而不求参数a ,只是利用其作为中间变量辅助计算,这也是在参数法中参数可以起的一个作用,即设参数辅助解决有关问题。
Ⅲ、巩固性题组:1. 已知复数z 满足|z|≤1,则复数z +2i在复平面上表示的点的轨迹是________________。
2. 函数y =x +2+142--x x 的值域是________________。
3. 抛物线y =x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值为_____A. 5B. 10C. 23D. 34. 过点M(0,1)作直线L ,使它与两已知直线L 1:x -3y +10=0及L 2:2x +y -8=0所截得的线段被点P 平分,求直线L 方程。
5. 求半径为R 的球的内接圆锥的最大体积。
CA B6. f(x)=(1-a 2cos 2x)sinx ,x ∈[0,2π),求使f(x)≤1的实数a 的取值范围。
7. 若关于x 的方程2x 2+xlg ()a a 23318-+lg 2(a a 212-)+lg 212a a -=0有模为1的虚根,求实数a 的值及方程的根。
8. 给定的抛物线y 2=2px (p>0),证明:在x 轴的正向上一定存在一点M ,使得对于抛物线的任意一条过点M 的弦PQ ,有12||MP +12||MQ 为定值。