知识讲解离散型随机变量的均值与方差(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除离散型随机变量的均值与方差【学习目标】1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题;2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题;【要点梳理】要点一、离散型随机变量的期望 1.定义:一般地,若离散型随机变量ξ的概率分布为则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望.要点诠释:(1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平.(2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值。
(3)随机变量的均值与随机变量本身具有相同的单位. 2.性质:①()E E E ξηξη+=+;②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(;b aE b a E +=+ξξ)(的推导过程如下::η的分布列为于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++…=+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。
要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念:已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数[12nS =21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。
2.离散型随机变量的方差:一般地,若离散型随机变量ξ的概率分布为则称ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+2()n i x E p ξ-⋅+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望.ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.要点诠释:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值).⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。
3.期望和方差的关系:4.方差的性质:若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2()D D a b a D ηξξ=+=;要点三:常见分布的期望与方差 1、二点分布:若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-证明:∵(0)P q ξ==,(1)P p ξ==,01p <<,1p q += ∴01E q p p ξ=⨯+⨯= 2、二项分布:若离散型随机变量ξ服从参数为,n p 的二项分布,即~(),B n P ξ,则 期望E nP ξ= 方差(1-)D np p ξ= 期望公式证明:∵k n k k n k n k k nq p C p p C k P --=-==)1()(ξ, ∴001112220012......n n n k k n k n n nn n n n E C p q C p q C p q k C p q n C p q ξ---=⨯+⨯+⨯++⨯++⨯, 又∵11)]!1()1[()!1()!1()!(!!--=-----⋅=-⋅=k n knnC k n k n n k n k n k kC ,∴=ξE (np 0011n n C p q--+2111--n n q p C +…+)1()1(111------k n k k n q p C +…+)0111q p C n n n --- np q p np n =+=-1)(.3、几何分布:独立重复试验中,若事件A 在每一次试验中发生的概率都为p ,事件A 第一次发生时所做的试验次数ξ是随机变量,且1()(1)k P k p p -ξ==-,0,1,2,3,,,k n =,称离散型随机变量ξ服从几何分布,记作:~()()P k k P ξξ==g ,。
若离散型随机变量ξ服从几何分布,且~()()P k k P ξξ==g ,,则 期望1.E p ξ=方差21-pD p ξ=要点诠释:随机变量是否服从二项分布或者几何分布,要从取值和相应概率两个角度去验证。
4、超几何分布:若离散型随机变量ξ服从参数为,,N M n 的超几何分布,则 期望()nME Nξ=要点四:离散型随机变量的期望与方差的求法及应用 1、求离散型随机变量ξ的期望、方差、标准差的基本步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列;③根据分布列,由期望、方差的定义求出E ξ、D ξ、σξ:σξ=注意:常见分布列的期望和方差,不必写出分布列,直接用公式计算即可. 2.离散型随机变量的期望与方差的实际意义及应用① 离散型随机变量的期望,反映了随机变量取值的平均水平;② 随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度。
方差越大数据波动越大。
③对于两个随机变量1ξ和2ξ,当需要了解他们的平均水平时,可比较1ξE 和2ξE 的大小。
④1ξE 和2ξE 相等或很接近,当需要进一步了解他们的稳定性或者集中程度时,比较1ξD 和2ξD ,方差值大时,则表明ξ比较离散,反之,则表明ξ比较集中.品种的优劣、仪器的好坏、预报的准确与否、武器的性能等很多指标都与这两个特征数(数学期望、方差)有关. 【典型例题】类型一、离散型随机变量的期望例1.某射手射击所得环数ξ的分布列如下:已知.【思路点拨】分布列中含有字母x 、y,应先根据分布列的性质,求出x 、y 的值,再利用期望的定义求解;【解析】x +0.1+0.3+y =1,即x +y =0.6.① 又7x +0.8+2.7+10y =8.9,化简得7x +10y =5.4.②由①②联立解得x =0.2,y =0.4.【总结升华】求期望的关键是求出分布列,只要随机变量的分布列求出,就可以套用期望的公式求解, 举一反三:【变式1】某一离散型随机变量ξ的概率分布如下,且E (ξ)=1.5,则a -b 为( ).A .-0.1B .0C .0.1D .0.2 【答案】B由分布列的性质知:0.1+a+b+0.1=1,∴a+b=0.8.又E (ξ)=0×0.1+1×a+2×b+3×0.1=1.5,即a+2b=1.2. 解得a=0.4,b=0.4,∴a -b=0.【变式2】随机变量ξ的分布列为)A .13B .11C .2.2D .2.3【答案】A 由已知得:E(ξ)=0×0.4+2×0.3+4×0.3=1.8, ∴E(5ξ+4)=5E(ξ)+4=5×1.8+4=13.【变式3】节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节后卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量服从如下表所示的分布,若进这种鲜花500束,则期望利润是.690元 C .754元D .720元【答案】A 节日期间预售的量:Eξ=200×0.2+300×0.35+400×0.3+500×0.15=40+105+120+75=340(束),则期望的利润:η=5ξ+1.6(500-ξ)-500×2.5=3.4ξ-450, ∴Eη=3.4Eξ-450=3.4×340-450=706.∴期望利润为706元. 【变式4】设离散型随机变量ξ的可能取值为1,2,3,4,且()P k ak b ξ==+(1,2,3,4k =),3E ξ=,则a b += ;【答案】0.1;由分布列的概率和为1,有()(2)(3)(4)1a b a b a b a b +++++++=, 又3E ξ=,即1()2(2)3(3)4(4)3a b a b a b a b ⋅++⋅++⋅++⋅+=,解得0.1a =,0b =,故0.1a b +=。
例2. 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X 的概率分布和数学期望; (2)求这名同学总得分不为负分(即X≥0)的概率.【思路点拨】本题显然为独立重复试验的问题,因此求各个情况的概率直接用公式即可。
(1)求X 的可能取值,即求得分,答对0道题得-300分,答对1道题得100-200=-100分,答对2道题得2×100-100=100分,答对3道题得300分;(2)总分不为负分包括100分和300分两种情况. 【解析】(1)X 的可能取值为-300,-100,100,300. P (X=-300)=0.23=0.008。
P (X=-100)=13C ×0.22×0.8=0.096,P (X=100)=23C ×0.2×0.82=0.384, P (X=300)=0.83=0.512. 所以X 的概率分布为∴E (X )=(-300)×0.008+(-100)×0.096+100×0.384+300×0.512=180. (2)这名同学总得分不为负分的概率为P (X≥0)=P (X=100)+P (X=300)=0.384+0.512=0.896. 【总结升华】求离散型随机变量均值的关键在于列出概率分布表. 举一反三:【变式1】 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望【答案】因为3.0)0(,7.0)1(====ξξP P , 所以.03.007.01=⨯+⨯=ξE【变式2】一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.【答案】设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3 当0ξ=时,即第一次取得正品,试验停止,则当1ξ=时,即第一次取出次品,第二次取得正品,试验停止,则当2ξ=时,即第一、二次取出次品,第三次取得正品,试验停止,则当3ξ=时,即第一、二、三次取出次品,第四次取得正品,试验停止,则∴ξ分布列为∴3012344422022010 Eξ=⨯+⨯+⨯+⨯=【变式3】某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足lkm的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η(Ⅰ)求租车费η关于行车路程ξ的关系式;(Ⅱ)若随机变量ξ的分布列为求所收租车费η的数学期望.(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟【答案】(Ⅰ)依题意得 η=2(ξ-4)十10,即 η=2ξ+2; (Ⅱ)=ξE 4.161.0183.0175.0161.015=⨯+⨯+⨯+⨯ ∵ η=2ξ+2∴ =ηE 2E ξ+2=34.8 (元) 故所收租车费η的数学期望为34.8元.(Ⅲ)由38=2ξ+2,得ξ=18,5⨯(18-15)=15 所以出租车在途中因故停车累计最多15分钟 例3.若某批产品共100件,其中有20件二等品,从中有放回地抽取3件,求取出二等品的件数的期望、方差。