当前位置:文档之家› 化学反应工程第四章答案

化学反应工程第四章答案

4-1 在定态操作反应器的进口物料中脉冲注入示踪物料。

出口处示踪物浓度随时间变化的情况如下。

假设在该过程中物料的密度不发生变化,试求物料的平均停留时间与时间t/s 0 120 240 360 480 600 720 840 960 1080示踪物浓度/)/(3cm g 0 0 0t/min246810121416 183/cm g c i0 0 0min/1)(it E0 0 0i i t E t )( 00 0min)(2i it E t0 2 5 0 0])(2)(4[3109753864210c c c c c c c c c c tdt c i +++++++++∆=⎰∞]0)5.20.1025.1(2)0.10.55.125.6(40[32++++++++= =100min)/1(100)()(0tii c dt c t c t E ==⎰∞})(])()()()([2])()()()([4)({31010997755338866442211_t E t t E t t E t t E t t E t t E t t E t t E t t E t t E t tt +++++++++∆=]0)03.08.05.0(2)14.05.075.013.0(40[32+++++++++=min 187.6=⎰∞=-=-=02222971.8187.625.47)(t dt t E t tσmin 24-2 无量纲方差表达式的推导 (1)推导无量纲方差222/ttσσθ=;(2)推导CSTR 的22tt=σ。

1. τθt=2. ττtet E -=1)(证明:2022)(ii i ittt t E t -∆=∑∞σ ⎰∞--=221tdt e t t ττ22)()()()(ττθθττθ--=⎰∞-d t E()]1)1([022--=⎰∞θθθτd E22θστ= 222/τσσθt=∴ 220222)(1)(--∞-=-=⎰⎰t dt e tt dt t E t ttττσ222ττ-=2τ=22τσ=t4-3 设()θF 及()θE 分别为闭式流动反应器的停留时间分布函数及停留时间分布密度函数,θ为对此停留时间。

(1)若该反应器为平推流反应器,试求 ①F(1); ②E(1);③F;④E;⑤F(2)若该反应器为全混流反应器,试求 ①F(1); ②E(1);③F;④E;⑤F(3)若该反应器为非理想流动反应器,试求 ①F(∞); ②F(0);③E(∞);④E(0);⑤⎰∞0)(θθd E ;⑥⎰∞)(θθθd E解1平推流模型0)(=θF )(t t 〈 0)(=θE )(t t ≠ 1)(=θF )(t t ≥ ∞=)(θE )(t t =)()(τθtF F =⎪⎩⎪⎨⎧===2.1,18.0,01,1θθθ⎩⎨⎧=====8.0,01,1)()(θθτθt E E2 全混流θθ-=e E )( , θθ--=e F 1)(==)()(τθt f F ⎪⎭⎪⎬⎫=-=-=----699.01551.01632.012.18.01e e e ⎪⎩⎪⎨⎧===2.18.01θθθ==)()(τθtE E ⎪⎭⎪⎬⎫==--449.0368.08.01e e ⎩⎨⎧==8.01θθ3非理想流动模型a 多釜串联 θθθN N N e N N E ---=1)!1()(, 0)(C C F N =θ()()1]!11)(!21)(!111[1)(12=-++++-=∞--N N N N N N e F θθθθ()()0]!11)(!21)(!111[1)0(12=-++++-=--N N N N N N eF θθθθ()()()0!11=-=∞--θθN N Ne N N E()()1,00!1001≠=-=-N e N N E N N()()1!1!1)(01010=-=-=⎰⎰⎰∞--∞--∞θθθθθθθθd e N N d e N N d E N N NN N N ()1!1)(0=-=⎰⎰∞-∞θθθθθθd e N N d E N N N4-4 C(t)00.20.40.60.811.2012345系列1t/min4-18图用阶跃法测定某一闭式流动反应器的停留时间分布,得到离开反应器的示踪剂浓度与时间的关系,如图4-18所示。

⎪⎩⎪⎨⎧-=120)(t t c 3322〉≤≤≤t t t试求 (1)该反应器的停留时间分布函数)(θF 及分布密度函数)(θE ;(2)数学期望θ 及方差2θσ;(3)若用多釜串联模型来模拟该反应器,则模型参数是多少? (4)若用轴向扩散模型来模拟该反应器,则模型参数是多少?(5)若在此反应器内进行1级不可逆反应,反应速率常数1min 1-=k ,且无副反应,试求反应器出口转化率。

解(1).()()θF c t c t F ==0)(⎪⎩⎪⎨⎧-=12)(t t c 3322〉≤≤≤t t t()⎪⎩⎪⎨⎧-==∴120)(0t c t c t F 3322〉≤≤≤t t t ,()θF t F =)(⎪⎩⎪⎨⎧=∆∆=010)(0t c c t E3322〉≤≤≤t t t ,()t t E E =)(θ()⎰⎰⎰⎰==⋅++⋅==∞∞2233225232100t dt t tdt dt t dt t tE t()⎪⎪⎩⎪⎪⎨⎧=0250θE 3322〉≤≤≤t t t(2). 1==-ttθ()751]425[254425]010[25432232322202222222=-=-+⨯+=-==⎰⎰⎰⎰⎰∞-∞-dt t dt t dt t dt t tt dt t E t tt σσθ(3). 多釜串联模型75122222====θσσστt t t N ()()()θθθθθ75175751!17575!1-----=-=e e N N E N N N()()]!11)(!21)(!111[1)(12---++++-=N N N N N N e F θθθθθ ()()]75!1751)75(!21)75(!111[1)(175275---++++-=θθθθθ e F(4). 轴向扩散模型()0133.075112222==--=-Pee Pe Pe θσ 试差 Pe=(5).()⎰⎰⎰⎰∞---∞-++==-33220101dte dt e dt edt t E e x kt ktktkt A0855.023=-=-te%45.91=A x4-5. 为了测定某一闭式流动反应器的停留时间分布,采用脉冲输入法,反应t/min 0 1 2 3 4 5 6 7 8 9 10()()3//cm g t c0 3 5 6 6 3 2 1 0(1)反应物料在该反应器中的平均停留时间t 及方差2θσ(2)停留时间小于的物料所占的分率。

解t(min) 0 1 2 3 4 5 6 7 8 9 10(3/cm g c i)0 0 3 5 6 6 3 2 1 0()it E0 0()i i t E t0 0 0.528 0.297 0()ii t E t 20 0 0.392 3.168 4.95 5.328 4.802 4.224 2,673 0(1).])(2)(4[3109753864210c c c c c c c c c c tdt c i +++++++++∆=⎰∞()()025.46321365040[31++++++++++=33.30=33.30)()(0tiic dt c t c t E ==⎰∞ min 1 })(])()()()([2])()()()([4)({31111997755338866442211_t E t t E t t E t t E t t E t t E t t E t t E t t E t t E t tt +++++++++∆=()088.4]0528.089.0792.0196.02297.0686.099.0492.0040[31=+⎪⎪⎭⎫⎝⎛+++++++++=⎰∞=-=-=0222253.10088.4244.27)(t dt t E t tσ63.0222==tt σσθ(2). ()()()()()()24]321[2014E E E E E dt t E ++++⨯=⎰361.0=4-6将一定量的示踪剂从一管式流动反应器的进口处注入,并在该反应器的出口处连续检测示踪剂的浓度()t c ,得到如下数据:t/min48121620242832())/(/3cm kg t c(1)试根据上述实验数据计算平均停留时间;(2)如果在该管式反应器中进行一级不可逆反应RA k −→−1,11m in 045.0-=k 试计算反应物A 的平均转化率;(3)试根据理想平推流模型计算平均转化率并与(2)结果进行比较;(4)若按照多级CSTR 模型处理,求模型参数N 和停留时间分布函数F(t)。

t min0 481216202428 323/m kg c i0 3 5 5 4 2 1 0 0()it E 0 0 0()ii t E t0 0 0()iit E t 24 9 10 0 0()itt E e045.0-0 0 0(1). 应用辛普森法则()800=⎰∞dt t c , ()()80t c t E i =1/min})(])()()([2])()()()([4)({3997755338866442211_t E t t E t t E t t E t t E t t E t t E t t E t t E t tt ++++++++∆= min 73.11=()8.360222=-=⎰∞t dt t E t ii tσ (2).R A k −→−111m in 045.0-=k()6.0415.010=⨯==-⎰∞-dt t E e x ktA , %40=A x(3).平推流%7.99997.01173.11045.0==-=-=⨯--e e x kt A,返混造成了实际转化率下降了50多。

(4)多级CSTR 串联模型47.38.3673.11222≈===-t t N σ ()324332841[1θθθθθ+++-=-eF , -=tt θθ()θF 01()()θF t F =4-7. 用阶跃法测定某一闭式流动反应器的停留时间分布,得到离开反应器的示t/s0 1525354555657590100()()3//cm g t c(1)试求该反应器的停留时间分布函数及平均停留时间;(2)若在该反应器内的物料为微观流体,且进行1级不可逆反应,反应速率常数105.0-=s k,预计反应器出口出的转化率;(3)若在该反应器内的物料为宏观流体,其他条件不变,试问反应器出口处的转化率是多少?解. (1) ()()0c t c t F = , ()()tt F t E ∆∆=∴ts0 152535455565759010()3/cm g t c 0()t F0 1 1()310⨯t E0 4 7 13 52 19 13 7 6 0()305.010⨯-itt E e0 0()()∑⎰∞∞∆==iiitt E t dt t tE t()S 2.620151069010107751010136510101955101052451010133510107251510415033333333=+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+=--------(2). 微观()()∑⎰∆≈=--∞-nii kt kt A t t E e dt t E e x i 01%4.86,136.0100136.0=-=⨯=A x(3). 宏观,对于一级反应宏观流体与微观流体转化率一样%4.86=Ax4-8.已知一等温闭式流动反应器的停留时间分布密度函数()t te t E 416-=min-1试求:(1)平均停留时间;(2)空时;(3)空速;(4)停留时间小于1min 的物料所占得分率;(5)停留时间大于1min 的物料所占的分率;(6)若用CSTR 串联模型来模拟反应器,则模型参数(N )为多少? 解. (1) ()t te t E416-=()21281604040420=====⎰⎰⎰⎰∞-∞-∞-∞dt e tdedt e t dt t tE t tttmin(2). 空时21==-t τmin (3). 空速 21==τSmin-1(4). ()4441141101416-----=-===⎰⎰⎰e edt e dt te dt t E ttt9817.0=(5). ()0183.0110=-⎰dt t E(6). CSTR 串联模型参数为:()8323612160404042430222=====-=⎰⎰⎰⎰⎰∞-∞-∞-∞-∞-dt e dtt e det dt e t t dt t E t t t tttσ328321,1222222=⎪⎭⎫ ⎝⎛====--t t t N N tσσσθ4-9 在一个全混釜中,等温下进行零级反应A →B ,反应速率为()L mol r A •=m in /9,进料浓度L mol c A /100=,流体在反应器内的平均停留时间min 1=t,请按下列情况分别计算反应器出口转化率:(1)若反应物料为微观流体; (2)若反应物料为宏观流体; 解. A →B L mol r A•=m in /9, L mol c A /100= min 1=t(1).微观流体91010AfAfAfA c r c c t -=⇒-=, L mol c Af/1=%90=Afx(2)宏观流体,零级反应,反应速率与浓度无关,kt c c A A =-0()Lmol t k C dt t E kt C dt t E c c A A A A /1910)()(000--=-=-==-∞∞⎰⎰ 90.0=Ax ,与微观流体转化效果相同4-10 在具有如下停留时间分布的反应器,等温进行一级不可逆反应A →P ,反应速率常数为1min2-。

相关主题