当前位置:
文档之家› UGNX有限元分析入门-专题典型实例
UGNX有限元分析入门-专题典型实例
o 1)施加边界约束 o 2)施加载荷
1)施加边界约束
o 单击工具栏中【约束类型】中的【用户定义约束】命令,弹出【用户定义约 束】对话框;
设置相关参数
固定约束施加 示意图
2)施加载荷
o 单击工具栏中的【载荷类型】图标右侧的小三角形符号,单击其中的【离心】 图标,弹出【离心力】对话框;
2020/3/19
设置相 关参数
设置相关 参数
2)自定义材料
单击工具栏中的【指派材料】图标,弹出【指派材料】对话框,在图形窗口选中被分 割后的两个模型作为【选择体】,单击【新建材料】选项下的【创建】命令,弹出如 图所示的【各向同性材料】对话框。
输入名称 及参数
单击【新建材料】
单击【确定】
3)创建物理属性
单击工具栏中的【物理属性】图标,弹出【物理属性表管理器】对话框
UG NX轴对称模型分析的基本要求; 所有的载荷、约束都必须是轴对称的;
2.1.2 问题描述
本章节以HSK刀柄作为分析对象,采用UG NX轴对称的方法,对其承载进
行有限元分析,针对轴对称类零件结构,为了简化模型和减少计算量,
UG NX提供了轴对称类结构的求解方案。本实例对刀柄承载进行静力学结
选择材料
单击【创建】
单击【确定】
4)网格属性定义
单击工具栏中的【网格收集器(俗称为:网格属性定义)】图标,弹出【网格捕集器】 对话框
设置相关参数
单击【确定】
5)定义截面模型
去掉【仿真导航器】窗口分级树中【多边形几何体】节点的【Polygon Body (3)】子 节点方框中的勾选,隐藏-Y向的模型,单击命令工具栏中【仅显示】命令按钮,弹出 【仅显示】对话框,选取对象,单击【确定】,即得到如图所示的截面。
(1)创建有限元模型的解算方案
o 依次左键单击【开始】和【高级仿真】,在【仿真导航器】窗口的分级树中,单击 【HSK63E.prt】节点,右键弹出菜单并单击出现的【新建FEM和仿真】选项,弹 出【新建FEM和仿真】对话框。
设置为轴 对称
单击确定
弹出信息对话框
仿真导航器新增新的节点
单击关闭
(2)创建有限元模型
理想化模型环境下简化模型 自定义材料 创建物理属性 网格属性定义 定义截面模型
1)理想化模型环境下简化模型
单击【仿真导航器】窗口分级树中【HSK63E_sim1.sim】节点的【HSK63E_fem1_i.prt】 子节点(理想化模型节点),即可进入理想化模型环境:先理想化几何体,再对称分 割模型;
UG NX有限元分析入 门-专题典型实例
本章内容简介 工程实际结构中,经常碰到结构几何形状呈现对称性的、在外载荷作用下变
形也呈现对称形式的问题,对这一类的工程问题的有限元分析,按பைடு நூலகம்模型是否具 备旋转轴, UG NX高级仿真中分别提供了轴对称分析类型、约束对称命令应用及 其相应的工作流程和参数设置方法,目的都是为了减少计算模型的规模,提高计
位移幅值 云图
Von Mises 云图
2)查看云图最大值及最小值
o 查看截面变形和应力的最大值与最小值可以通过【后处理导航器】中的【云图绘图】 中的【Post View1】来实现;
Von Mises 云图 最大值及最小值
3)注释N个最大值及最小值
o 通过【拖动注释】命令来放置和调整最大值与最小值的位置,单击【新建注 释】命令,弹出相应的对话框
单击确定
设置相 关参数
(5)求解及后处理
p在仿真窗口中单击【Solution 1】节点,右键单击弹出的【求解】命令,弹 出【求解】对话框,单击【确定】按钮,稍等后完成分析作业,关闭各个信 息窗口,双击出现的【结果】节点,即可进入后处理分析环境。
1)云图结果查看
o 在【后处理导航器】窗口分级树中,点击【Solution 1】,打开【位移-节点的】前面 的加号(+),单击【幅值】节点,可以查看截面的整体变形情况。打开【应力-单元 节点的】前面的加号(+),选择【Von Mises】可以查看截面的Von Mises的应力情 况。
算效率。
2.1 UG NX有限元入门实例1—轴对称分析
本小节主要内容: 基础知识 问题描述 问题分析 操作步骤 本节小结
2.1.1基础知识
弹性力学中将回转体对称于旋转轴而发生变形的问题定义为轴对 称问题。根据铁摩辛柯《弹性理论》中介绍,在轴对称情况下, 只有径向和轴向位移,不能有周向(切向)位移。轴对称分析要 求,除了结构是轴对称之外,载荷和约束也必须是轴对称的。由 此可见,在轴对称分析中不能有周向变形,因而也不能施加周向 载荷。
相关操作后得 到的截面模型
(3)划分网格
单击工具栏中的【2D网格】图标,弹出【2D网格】对话框 仿真导航器新增节点
设置相关 参数
单击确定
1)分析单元质量
o 单击工具栏中的【单元质量】图标,弹出【单元质量】对话框:
设置 相关 参数
(4)创建仿真模型
o 单击【仿真导航器】窗口分级树中【HSK63E_fem1.fem】节点,右键弹出 快捷菜单的【显示仿真】命令,弹出【HSK63E_sim1.sim】节点并单击该 选项,即进入SIM仿真环境
构分析,并设置相关边界条件;
HSK刀柄实体 模型
三维简化 模型
材料参数表
2.1.3 问题分析
该HSK刀柄的几何形状、载荷条件以及边界条件均满足轴对称结构分析的基本 条件,因此,可以按照轴对称解算方法对其进行承载求解。
本实例关键操作是:合理简化和选取零件截面作为分析对象,因此,对于坐标 系设置十分重要,本实例中没有涉及到对坐标系原点及坐标轴调整,以及对主 模型做重定位操作方法。
设置相关参数
3个最小值及 3个最大值
4)编辑后处理视图
o 选择【编辑后处理视图】命令,可以对后处理中的【显示】、【图例】、 【文本】等内容进行相关参数设置;单击【编辑后处理视图】命令,弹出相 应的对话框;
在轴类零件中,因功能需要或者工艺要求而设置的凹槽、凸台、过渡圆角及倒 角等,如果在承载过程中对结构整体受力分析结果的影响很小,那么,在有限 元分析过程中一般可以忽略,本实例需要对模型的一些小特征进行清理。
2.1.4 操作步骤
创建有限元模型的解算方案 设置有限元模型基本参数 划分有限元模型网格 创建仿真模型 求解及后处理