当前位置:文档之家› 大学基础物理学课后习题答案_含思考题(1)

大学基础物理学课后习题答案_含思考题(1)

大学基础物理课后答案主编:习岗高等教育出版社第一章 思考题:<1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。

对上液面应用拉普拉斯公式,得 A A R p p γ20=- 对下液面使用拉普拉斯公式,得 BB 02R p p γ=- 又因为 gh p p ρ+=A B 将三式联立求解可得 ⎪⎪⎭⎫ ⎝⎛-=B A 112R R g h ργ<1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。

在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。

相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。

<1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。

伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。

如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。

<1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。

斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。

练习题:<1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。

在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。

练习题1-6用图d h d F由图可知 osin60d sin d d hh m ==θ 水坝侧面的面积元d S 为 d d d sin 60hS l m l °== 该面积元上所受的水压力为 0d d d [(5)]sin 60hF p S p ρg h l°==+-水坝所受的总压力为 ()[]N)(103.760sin d 5d 855o0⨯=-+==⎰⎰h l h g p F F ρ(注:若以水坝的上顶点作为高度起点亦可,则新定义的高度5h h ¢=-,高度微元取法不变,即d d h h ¢=,将h ¢与d h ¢带入水坝压力积分公式,同样可解出水坝所受压力大小。

)<1-10> 解:(1)设A 为水库中水面上一点,对A 点和C 点使用伯努利方程可写出C 2C C A 2A A 2121gh v p gh v p ρρρρ++=++取C 点为基准,0C =h ,由于水库水面下降很小,0A =v ,0C A p p p ==(0p 为大气压),2A h h =,上式即可简化为2C 221v gh ρρ=由此解得 (m)9.90.58.9222C =⨯⨯==gh v(2)对B 点和C 点使用伯努利方程,可写出C 2C C B 2B B 2121gh v p gh v p ρρρρ++=++取C 点为基准,0C =h ,C B v v =,21B h h h +=,0C p p =,上式化为 021B )(p h h g p =++ρ即 P a )(103.2)0.50.3(8.91010013.1)(435210B ⨯=+⨯⨯-⨯=+-=h h g p p ρ<1-11> 解:(1)设水池表面压强为1p 、流速为1v 、高度为1h ,小孔处压强为2p 、流速为2v 、高度为2h ,由伯努利方程可写出221112221122p v gh p v gh ρρρρ++=++根据题中条件可知021p p p ==、01=v 、21h h h -=,于是,由上式可得 gh v 22=又由运动学方程 221gt h H =- 可解出 gh H t )(2-=则水平射程为 )(4)(222h H h gh H gh t v R -=-⋅== 带入数据解得9.17(m)R =(2)根据极值条件,在0d d =hR时,R 出现最大值,即 022=--hHh h HR 出现最大值。

由此解出h =5m 时,R 出现最大值,此时R =10m 。

<1-13> 解:由泊肃叶流量公式可知 lghR l p p R q v ηρπηπ884214=-=)( 又由 tmt V q v ρ==由上两式可得 lmghR t η842πρ=带入已知数据,可解出()s)Pa (04.01066.010*******.92101.014.360109.13224223⋅=⨯⨯⨯⨯⨯⨯⨯⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯=----<1-15> 解:用沉降法测黏滞系数时 20T2()9gr v ρρη-=带入已知数据,解得 2T 092gr v ⎪⎪⎭⎫ ⎝⎛-=ρρη ()()23231038.9101.31026.155.292--⨯⨯⨯⨯⨯-⨯= s)Pa (82.0⋅=第二章思考题:η<2-4> 答:不相同,在冬天打入轮胎内的空气质量要大一些。

因为夏天气温高,空气分子的平均平动能较大;冬天气温低,空气分子的平均平动能较小。

根据理想气体的压强公式 23p n ε=,可知,当压强相同时,在冬天打入轮胎内的空气密度(即质量)要大一些。

<2-6> 答:这种看法是错误的。

因为理想气体的温度公式只适用于理想气体,而在-273℃时,已经不存在理想气体了,温度公式也就不成立了,如此的推论自然也就是错误的。

事实上,即使达到-273℃,分子也还在作微小的振动,运动仍不会停止。

<2-8> 答:(1)()d f v v 表示速率分布在v v v d ~+区间内的气体分子数占总分子数的比率 (2)()d Nf v v 表示速率分布在v v v d ~+区间内的气体分子数(3)21()d v v f v v ⎰表示速率分布在21~v v 区间内的气体分子数占总分子数的比率(4)21()d v v Nf v v ⎰ 表示速率分布在21~v v 区间内的气体分子数<2-11>答:平均速率v 可以了解气体分子平均的运动快慢;方均根速率是分子平均平动动能的标志;最概然速率讨论气体分子的统计分布。

此三个速率大小关系 2v v v p <<<2-12> 答:(1)p nkT =,温度和压强相同时,单位体积内的分子数相同(2)m nm =分子,由于分子的种类不同,所以单位体积内的气体质量不同(3)32k n n kT εε==,由于温度和单位体积内的分子数相同,所以单位体积内的气体分子总平动动能相同(4)2iE n kT =,由于温度相同,而自由度数不确定,因此大为体积内气体的内能无法比较<2-13> 答:根据2ikT ε=,由于温度不变,气体分子平均动能不变。

但由于分子数密度减少了,容器中的气体质量减小,根据 2m iE RT M =,可知气体的内能减少。

练习题:<2-3> 解:由题意得:Pa 1001.15⨯=p 、K 15.273=T(1) )(m 1044.2125-⨯==kTpn (2) 氧气分子的密度:)m kg (3013-⋅==.N n μρA(3) 平均平动动能:(J)1021.62321-⨯==εkT i<2-7> 解:已知311410kg mol M --=⨯⋅、3123210kg mol M --=⨯⋅=得 23v T M R=当132s m 102.11-⋅⨯=v ,由①得:226341111210410 1.0110(K)33831v .T M R .-⨯⨯⨯===⨯⨯2263422112104321016110(K)33831v .T M .R .-⨯⨯⨯⨯===⨯⨯当132s m 104.2-⋅⨯=v ,由①得:2263211 2.410410 4.6210(K)33831v T M R .-⨯⨯⨯''===⨯⨯2263322 2.41032107.3910(K)33831v T M R .-⨯⨯⨯''===⨯⨯<2-9> 解:(1)由温度的微观公式:T N R kT v m A2323212==得 )(mol 1015.631232-⨯==v m RT N A(2)粒子遵守麦克斯韦速率分布,得 )s (m 103.1812--⋅⨯=π=mkTv ①<2-12> 解: (1)速率分布曲线如图2-1所示(2) 由归一化条件()0d 1f v v ∞=⎰,得00()d d 1V f v v C v CV ∞===⎰⎰则01V C =(3) 粒子平均速率为21)(0000V dv V Vdv v Vf V V ⎰⎰∞===<2-15> 解:由题意知: E E K ∆=∆M m N =T k mv ∆=25212 联立①②③式得:23232101007.7(K)558.31μv T R -⨯⨯∆===⨯<2-16> 解:(1)依题意得: RT MpV μ=RT iM E 2μ=VN n =联立①②③可得: (Pa)1035.1100.251075.622532⨯=⨯⨯⨯⨯==-iV E p (2)因 nKT p = 联立③④得: (K)1062.32⨯==NKpVT图2-1①②③①②③④(J)1049.72321-⨯==εkT第三章思考题<3-3> 答:内能是状态量,是温度的单值函数。

热量是过程量,如系统经历的热力学过程相关。

(1)说法是错误的,因为热量是过程量。

(2)说法是正确的,对于相同的物体,内能是温度的单值函数。

<3-4> 答:根据题意有,系统吸收热量1.045×108J ,系统对外做功为30×103×3600=1.08×108J ,系统对外放热3.135×107J ,即释放的能量共为1.3935×108J 。

可见不符合热力学第一定律,因此这种机器不可能。

<3-7> 答:该一定量的理想气体由状态1变化到状态2,系统内能的改变量是一样的,因此根据热力学第一定律Q E W =∆+,在过程A 和过程B 中吸收的热量可通过在这两个过程中系统对外所做的功做比较。

根据功的几何意义,由图可见,过程A 中系统对外所做的功比较大,因此,该过程吸收的热量也相应的比较大。

相关主题