. . . . .. .. .. 化工安全课程设计 题目:氮肥化工安全课程设计 完成部分:原料和储存单元的装置区布局及说明
姓 名: 学 号: 学 院: 化学与材料工程学院 班 级: 安全工程14 组 长: 同组人员: 指导教师: 完成日期: 2017.01.09 . . . . .. .. .. 目录 一、主要生产装置危险和可操作性分析 ............................................. 1 1.小氮肥生产工艺流程及装置特点 ............................................. 1 2.小氮肥生产中的火灾爆炸因素分析 ........................................... 1 二、装置区布局及说明 ........................................................... 3 1、装置区布局的大体设计要求 ................................................ 3 2.氮肥生产流程 ............................................................. 5 3.主要设备布置规 .......................................................... 10 三、原料和产品储存单元说布局及说明 ............................................ 12 1.氮肥原料 ................................................................ 12 2、氮肥储存单元布局及说明 ................................................. 20 四、氮肥厂防火防爆设计 ........................................................ 23 1.区域选择 ................................................................ 23 2. 生产区间划分 ........................................................... 24 3 火灾危险类别的确定 ...................................................... 26 4. 耐火等级的确定 ......................................................... 32 5. 防火间距 ............................................................... 38 6. 防爆电气的设计 ......................................................... 40 7 泄爆方式确定及泄爆面积计算 .............................................. 43 8 消防灭火器的配备 ........................................................ 45 9. 总结 ................................................................... 51 . . . .
.. .. .. . . . .
.. .. .. 一、主要生产装置危险和可操作性分析
1.小氮肥生产工艺流程及装置特点 某小型合成氨厂的合成氨生产是以白煤为原料,在煤气发生炉燃烧,间隙加入空气和水蒸气,产生半水煤气;再经气柜到脱硫工段,脱除气体中的硫;到变换工段将气体中一氧化碳变换为CO2;经压缩机输送到脱碳与铜洗工段,清除并回收气体中的CO2;以及清除气体中少量有害成份;最后送合成工 段,生成合成氨。 在整个合成氨生产操作过程中,始终存在着高温、高压、易燃、易爆、易中毒等危险因素。同时,因生产工艺流程长、连续性强,设备长期承受高温和高压,还有部介质的冲刷、渗透和外部环境的腐蚀等因素影响,各类事故发生率比较高,尤其是火灾、爆炸和重大设备事故经常发生。
2.小氮肥生产中的火灾爆炸因素分析 2.1 造气工段 造气工段主要制造半水煤气,其主要成分如下:H2,CO,CO2,N2及极少量的CH4,O2和微量的H2S[8] 。H2,CO、CH4极易爆炸。在生产过程中,一 旦空气进入煤气柜、洗气塔、煤气总管,H2,CO和CH4等与空气混合形成爆炸性混合气体,遇到明火 或获得发生爆炸的最小能量,即可发生爆炸。氧含 量是煤气生产过程中一个重要的控制指标,要求控制在0.5%(体积比)以下。氧含量的增高,意味着火灾、爆炸危险性的增加。 另外,在进行停车作业检修过程中,对于设备、管道、阀门等,如果没有进行置换或置换不干净,在用火作业前没有进行动火分析,确定的取样分析部位不对而导致分析结果失真,或者进行作业时,没有采取可靠的隔绝措施,导致易燃易爆气体进入动火作业区域,均可导致火灾、爆炸事故。 . . . . .. .. .. 2.2 脱硫工段 半水煤气中的H2,CO,CH4和H2S等都是易燃易爆的气体。在脱硫工段,常因设备或管道泄漏 造成火灾、爆炸;也会因操作不慎、设备缺陷等原因,导致罗茨鼓风机抽负压,使得空气进入系统,与半水煤气混合,形成可爆炸性气体,引起爆炸事故。在生产系统的设备和管道表面,由于H2S气体的作用,常会生成一层疏松的铁的硫化物(FeS与Fe2S),该硫化物遇到空气中的氧,极易引起氧化反应,放出大量的热,很快使自身温度升高并达到其燃点而引起自燃。同时,在检修时,设备管道敞开后,也常会因其部表面铁的硫化物和煤焦油与进入的空气迅速发生氧化反应而引起自燃着火的现象。 2.3 变换工段 变换工段是在一定的温度和压力下进行的,既存在物理爆炸的危险性,又存在化学爆炸的危险性。在生产过程中,由于设备和管道在制造、检维修中本身存在缺陷或者气体的长期冲刷,设备、管道会因腐蚀等造成壁厚减薄、疲劳,进而产生裂纹等缺陷,如果不能及时发现,及时消除,极易因设备、管道因为承受不了正常工作压力而发生物理爆炸,其后果又可能引发次生火灾及化学爆炸。 半水煤气转换为变换气后,气体中的H2含量显著增加,高温气体一旦泄漏出来,遇空气易形成爆炸性混合物,遇火或高热很容易引起火灾、爆炸事故;如果设备或生产系统形成负压,空气被吸入与煤气混合,形成爆炸性混合物,在高温、摩擦、静电等作用下,也会引起化学爆炸;如果生产系统半水煤气中氧含量超过工艺指标,会引起过氧爆炸,违章动火,违章检修,也会引起化学爆炸。 2.4 压缩工段 易燃、易爆气体经压缩机加压后,其压力和温度都得到提高,可燃气体的爆炸围 . . . . .. .. .. 随温度高、压力大而扩大。若高压气体泄漏到空间,即使有少量的也容易形成爆炸性混合物,同时高温、高压气体泄漏时,气流冲击产生静电火花,极易引起火灾、爆炸事故。 2.5 脱碳与铜洗工段 铜洗工段的压力及H2浓度很高。同时,高、低压连通部位多,容易发生高压串到低压部分,导致发 生物理爆炸、化学爆炸和火灾危险。2.6 合成工段 在小氮肥生产中,合成工段属于高温、高压工段,且高压、低压并存,这决定了对生产合成氨的设备、管道必须有更高要求。如果因为材质本身的缺陷,制造质量不过关,维修质量不合格,外界压力超过设备、管道的承受压力,便会发生物理爆炸,同时也会引发化学爆炸。在高温高压下,H2对碳钢有着较强的渗透能力,形成氢腐蚀,使钢材脱碳而变脆(即氢脆);N2也会对设备发生渗氮作用,从而减弱其机械性能;材料自身在高温高压下会发生持续的塑性变形,改变其金相组织,从而引起材料强度、延伸等机械性能下降,使材料产生拉伸、起泡、变裂和裂纹而破坏。氢脆、氮蚀、塑性变形的发生,也可引起爆炸事故的发生。 合成工段主要使用H2为原料,反应生成了氨。H2和NH3是易燃易爆气体,而且其爆炸极限在高温高压下将扩大,一旦发生泄漏而与空气混合,极易发生爆炸。
二、装置区布局及说明 1、装置区布局的大体设计要求 1)重量大的设备设置在地基最好的地方。 2)换热器尽量设在地上。 . . . . .. .. .. 3)按照流程图,对设备周围的配管、阀门仪表等的安装位置进行研究,留出充分的空间,以免互相碰撞。 4)施工所需要的道路及安装所需要的空间。 5)为了将来扩建,预留适当的空间,另外还要考虑与原有危险性大的设备保持安全距离。 6)因为在运转或维修时可能会有化学危险物等流出,所以泵、换热器、塔、槽等设备的周围地面应进行铺装,并用高于15cm的围堰围住。 7)设备与设备之间以及这些设备与其他设备之间所铺设的通道的宽度应为0.8m以上。 8)装置的道路两个方向都是通路,不能有死路,以便在发生火灾时消防车的进出。 9)装置的设施均应通风良好,不能有滞留气体的地方。 10)装置平面布置设计应满足工艺流程要求,按物流顺序布置设备。 11)装置平面布置设计应满设备的间距、建筑物、构筑物的防火间距要求,符合安全生产和环境保护要求。 12)装置平面布置设计应考虑管道安装经济合理和整齐美观,节省用地和减少能耗,便于施工、操作和维修。 13)装置平面布置设计应满足全厂总体规划的要求;装置主管廊和设备的布置应根据装置在工厂总平面图上的位置以及有关装置、罐区、系统管廊、道路等的相对位置确定,并以相邻装置的布置相协调。 14)装置平面布置设计应根据全年最小风频率风向确定设备、设施与建筑物的相对位置。