当前位置:文档之家› 第七章 结构振动的有限元分析

第七章 结构振动的有限元分析


LSTR,1,2 !连接点1和2生成直线1 LSTR,5,1 !连接点5和1生成直线2 BSPLIN,2,3,4,5,,,-0.025,0,0,-0.025,-0.00625,0, !采用B样条,连 接点2,3,4,5生成曲线3 AL,1,2,3 !由线1,2,3围成一个面 ESIZE,0.00625 !在单元划分前,定义单元的边的尺度为 0.00625 MSHAPE,0,2D !设置单元划分的类型为2D四边形(key=0) MSHKEY,0 !设置网格的自由划分(0) AMESH,all !对所有的面进行网格划分(无设置时,则默认为 采用第1号类型单元)
静力学情形(static case) 静力学情形 由于与时间无关,则方程(7-19)退化为
无阻尼情形(undamped system) 无阻尼情形 此时 ,则方程(7-19)退化为
无阻尼自由振动情形(free vibration of undamped system) 无阻尼自由振动情形 则 , ,方程(7-19)退化为
/SOLU !进入求解模块 ANTYPE,2 !设置模态分析(2) MODOPT,LANB,5 !设定LANB方法,提取5阶模态 MXPAND,5, , ,0 !设定模态扩展数为5 MODOPT,LANB,5,0,0, ,OFF !设定LANB方法,计算5 阶模态 SOLVE !求解 FINISH !退出求解模块
7.1.3 常用单元的质量矩阵
结构振动分析将涉及到结构的刚度矩阵、质量矩阵和阻尼 矩阵,由(7-17)式可知,动力学问题中的刚度矩阵与静力 问题的刚度矩阵完全相同,而质量矩阵则通过(7-15)式来 进行计算,对于一种单元,只要得到它的形状函数矩阵, 就可以容易地计算出质量矩阵;由阻尼矩阵的计算公式 (7-16)可知,它的计算与质量矩阵相同,只是有关的系数 不同而已。下面给出常见单元的质量矩阵。
单元内的位移插值函数为
其中N(ξ) 为单元的形状函数矩阵,与相对应的静力问题单 元的形状函数矩阵完全相同,ξ为单元中的几何位置坐标。
基于上面的几何方程和物理方程以及式(7-11),将相元有限元方程
将单元的各个矩阵进行组装,可形成系统的整体有限元方 程,即
(2)集中质量矩阵 将该二节点杆单元的质量直接对半平分,集中到二个节点 上,就可以得到集中质量矩阵(lumped mass matrix)为
可以看出,集中质量矩阵的系数都集中在矩阵的对角线 上,也就是说对应于各个自由度的质量系数相互独立, 相互之间无耦合;而一致质量矩阵的系数则有相互耦合。
平面三节点三角形单元的质量矩阵 (1)一致质量矩阵
7.1.1 结构振动分析的基本方程 描述结构动力学特征的基本力学变量和方程与前面的静 力问题类似,但增加了惯性力项和阻尼力项,且所有的 变量都将随时间而变化 结构振动的三大类变量 位移 应变 应力 是坐标位置ξ(x,y,z)和时间t的函数。
结构振动的三大类方程及边界/初始条件 结构振动的三大类方程及边界 初始条件 平衡方程(考虑惯性力和阻尼力)
其振动形式叫做自由振动(free vibration),该方程解的形式为 这是简谐振动的形式,其中ω为常数;将其代入(7-23)中, 有
该方程有非零解的条件是
这就是特征方程(eigen equation),ω为自然圆频率 (natural circular frequency)(rad/sec),也叫圆频率,对 应的频率为f=ω/2π(Hz)。求得自然圆频率ω后,再将其 代入方程(7-26)中,可求出对应的特征向量(eigen vector) ˆq ,这就是对应于振动频率ω的振型(mode)。
杆单元的质量矩阵 质量矩阵分为两种,即一致质量矩阵和集中质量矩阵。 (1)一致质量矩阵 对于二节点杆单元,在局部坐标内有节点位移列阵和形状 函数矩阵
相应的质量矩阵为
所谓一致质量矩阵(consistent mass matrix)是指推导质量 矩阵时与推导刚度矩阵时所使用的形状函数矩阵相“一 致”。
几何方程
物理方程
边界/初始条件 BC/IC 位移边界条件BC(u)
力边界条件BC(p)
初始条件IC(initial condition):
7.1.2 结构振动的有限元分析列式 用于动力学问题分析的单元构造与前面静力问题时相同,不 同之处是所有基于节点的基本力学变量也都是时间的函数 单元的节点位移列阵为
TYPE, 2 !设置单元类型2(空间单元) EXTOPT,ESIZE,10,0, !设置体单元扩展为10段 VEXT,all,,,0,0,0.25,,,, !对所有的面进行z方向的体(包括单 元)扩展,每次扩展的z方向增量为0.25 ESEL,U,TYPE,,1 !除单元类型1外,选择所有的单元(实际 上就是体单元) NSEL,S,LOC,Z,0 !选择z=0的节点 D,all, , , , , ,ALL, , , , , !对所选择的节点施加全部的固定约 束 NSEL,ALL !选择所有的节点 FINISH !前处理结束
第7章 结构振动的有限元分析 章 7.1 结构振动分析的基本原理 结构的振动分析将涉及到 模态分析(modal analysis)、 瞬态动力学分析(transient dynamics analysis)、 简谐响应分析(harmonic response analysis)、 随机谱分析(spectrum analysis)等方面, 其中结构的模态分析(固有频率与振型)将是所有振动分析的 基础,下面将就结构的模态分析进行阐述。
(2) 集中质量矩阵
机翼模型的振动模态分析 一个简化的飞机机翼模型如图所示,该机翼沿延翼方向为 等厚度。有关的几何尺寸见图,机翼材料的常数为:弹性 模量 ,泊松比 ,密度 ; 对该结构进行振动模态的分析。
/PREP7 ! 进入前处理 ET,1,PLANE42 !选取单元类型1(平面单元) ET,2,SOLID45 !选取单元类型2(空间单元) MP,EX,1,0.26e9 !定义材料的弹性模量(1号材料) MP,DENS,1,886 !定义材料的密度(1号材料) MP,PRXY,1,0.3 !定义材料的泊松比(1号材料) K, ,,,, !生成几何点1,坐标(0,0,0) K, ,0.05,,, !生成几何点2,坐标(0.05,0,0) K, ,0.0575,0.005,, !生成几何点3,坐标(0.0575,0.005,0) K, ,0.0475,0.0125,, !生成几何点4,坐标(0.0475,0.0125,0) K, ,0.025,0.00625,, !生成几何点5,坐标(0.025,0.00625,0)
/POST1 !进入一般的后处理 /VIEW, 1 ,1,1,1 !设置视角 /ANG, 1 /REP,FAST SET,FIRST !调出第1阶的模态结果 SET,NEXT !调出下一阶的模态结果 SET,NEXT !调出下一阶的模态结果(实际上,这时为 第3阶模态) PLDI, , !显示变形后的结构图 ANMODE,10,0.5, ,0 !进行动画显示,设置10帧,每 帧显示0.5秒
相关主题