纤维混凝土
1.技术原理
纤维混凝土是指掺加短钢纤维或合成纤维作为增强材料的混凝土,钢纤维的掺入能显著提高混凝土的抗拉强度、抗弯强度、抗疲劳特性及耐久性;合成纤维的掺入可提高混凝土的韧性,特别是可以阻断混凝土内部毛细管通道,因而减少混凝土暴露面的水分蒸发,大大减少混凝土塑性裂缝和干缩裂缝。
2.施工工艺和方法
(1)原材料
1)水泥:钢纤维混凝土应采用普通硅酸盐水泥和硅酸盐水泥;合成纤维混凝土优先采用普通硅酸盐水泥和硅酸盐水泥,根据工程需要,选择其他品种水泥;
2)骨料:钢纤维混凝土不得使用海砂,粗骨料最大粒径不宜大于钢纤维长度的2/3;喷射钢纤维混凝土的骨料最大粒径不宜大于10mm;
3)纤维:纤维的长度、长径比、表面性状、截面性能和力学性能等应符合国家有关标准的规定,并根据工程特点和制备混凝土的性能选择不同的纤维。
(2)配合比
纤维混凝土的配合比设计应注意以下几点:
1)钢纤维混凝土中的纤维体积率不宜小于0.35%,当采用抗拉强度不低于1000MPa的高强异形钢纤维时,钢纤维体积率不宜小于0.25%;各类工程钢纤维混凝土的钢纤维体积率选择范围应参照国家与有关标准。
控制混凝土早期收缩裂缝的合成纤维体积率宜为0.06%~0.12%。
2)纤维混凝土的最大胶凝材料用量不宜超过550kg/m3;喷射钢纤维混凝土的胶凝材料用量不宜小于380kg/m3。
(3)混凝土制备
纤维混凝土的搅拌应采用强制式搅拌机;宜先将纤维与水泥、矿物掺合料和粗细骨料投入搅拌机干拌60s~90s,而后再加水和外加剂搅拌120~180s,纤维体积率较高或强度等级不低于C50的纤维混凝土宜取搅拌时间范围上限。
当混凝土中钢纤维体积率超过1.5%或合成纤维体积率超过0.2%时,宜延长搅拌时间。
3.质量保证措施
(1)纤维要选择合适的掺量,合成纤维会使混凝土强度降低,在同时满足抗裂性能和力学性能的前提下确定掺量,一般积率不超过0.12%。
(2)钢纤维或合成纤维掺量过多时,都会使坍落度损失增加,选择合适的掺量和调整配合比,使纤维的掺入对混凝土工作性不产生负面的影响;
(3)纤维混凝土的轴心抗压强度、受压和受拉弹性模量、剪变模量、泊松比、
线膨胀系数以及合成纤维轴心抗拉强度标准值和设计值可按《混凝土结构设计规范》GB50010的规定采用。
纤维体积率大于0.15%的合成纤维混凝土的上述指标应经试验确定。
4.纤维混凝土的作用
制造纤维混凝土主要使用具有一定长径比(即纤维的长度与直径的比值)的短纤维。
但有时也使用长纤维(如玻璃纤维无捻粗纱、聚丙烯纤化薄膜)或纤维制品(如玻璃纤维网格布、玻璃纤维毡)。
其抗拉极限强度可提高30~50%。
纤维在纤维混凝土中的主要作用,在于限制在外力作用下水泥基料中裂缝的扩展。
在受荷(拉、弯)初期,当配料合适并掺有适宜的高效减水剂时,水泥基料与纤维共同承受外力,而前者是外力的主要承受者;当基料发生开裂后,横跨裂缝的纤维成为外力的主要承受者。
若纤维的体积掺量大于某一临界值,整个复合材料可继续承受较高的荷载并产生较大的变形,直到纤维被拉断或纤维从基料中被拨出,以致复合材料破坏。
与普通混凝土相比,纤维混凝土具有较高的抗拉与抗弯极限强度,尤以韧性提高的幅度为大。
5.适用范围
适用于对抗裂、抗渗、抗冲击和耐磨有较高要求的工程。
6.聚丙烯纤维混凝土
聚丙烯纤维混凝土是60年代末国外开发的一种新型混凝土材料。
它具有能防止或减少裂缝、改善长期工作性能、提高变形能力和耐久性等优点因而在军事、交通、房建、机场、水利等类工程上得到了广泛的应用。
我国从90年代初首先在道路、桥梁和房建工程中应用此类材料,取得良好的技术经济效果。
但水利工程部门对聚丙烯纤维混凝土还只停留在试验阶段,仅有的一点试验成果也很不系统完整,影响了这一新材料在水利工程上的开发应用。
在新世纪到来之际,水利建设正面临着新的发展机遇和挑战。
作为国家的一项基础产业,水利部门不仅要以更快的速度建设更多的水利工程,而且在工程质量上也要满足更高的建设标准,要求进一步采用新技术、新工艺和新材料。
与其它工程相比,水利工程对混凝土有着自己特殊的要求。
特别是近年来出现了许多技术难度高的新工程结构,带来了水工混凝土一系列的新问题。
例如,我国近十几年来得到迅速发展的面板坝以及许多板式结构的防裂问题、许多挡水、隔水结构的混凝土提高防渗性能的问题以及高坝建设带来的高速水流冲刷磨损问题等等。
这些都要求提高水工混凝土的抗渗、防裂、耐磨、抗冲击、韧性、耐久性等综合性能。
为了适应我国水利工程快速发展的形势,提高工程质量和长期效益,开展聚丙烯纤维混凝土的有关性能及其在水利工程上应用的研究,具有重要的现实意义,是十分必要的,也是十分迫切的。
白溪水库总库容1.684亿m3,属国家大(2)型水库,是以供水、防洪为主、兼顾发电、灌溉等效益的综合利用水利枢纽。
水库大坝采用钢筋混凝土面板堆石坝,最大坝高124.4 m,在我国面板堆石坝中高度居第四位。
大坝上游坝坡
1:1.4,下游平均坝坡1:1.52,坝顶高程177.4m,面板厚度由坝顶至坝底为30~66cm,在面板厚度的中部布置φ20、22、25mm、间距20⨯20cm的钢筋网。
混凝土面板坝工程中,防止面板的裂缝和提高混凝土变形能力一直是主要技术问题之一。
裂缝的产生不仅加大了大坝渗漏损失,降低了工程效益,而且使混凝土的耐久性降低,钢筋锈蚀,影响工程寿命。
白溪水库大坝二期面板位于水位变动区,冬季经常受到寒流、大风等环境因素的作用,工作条件比较恶劣。
防止或减少裂缝和提高面板抗变形能力,对延长面板工作寿命,保证大坝安全运行,十分必要。
同时,白溪水库溢洪道末端流速达到35~37m/s,需要采取措施有效的防止混凝土的冲刷磨蚀。
根据有关专家建议,经工程建设单位白溪水库建设指挥部、工程设计单位华东勘测设计研究院、施工单位水电十二局以及施工监理等共同研究,为了提高白溪水库工程混凝土的质量和耐久性,决定结合工程建设开展对聚丙烯纤维混凝土在水利工程上的应用研究。
这个想法在2000年4月得到了水利部和两院院士、中国工程院副院长潘家铮等国内有关知名专家的关注和支持。
经宁波市水利局同意申报,《聚丙烯纤维混凝土在水利工程上的应用研究》课题已列入水利部和宁波市2000年度科技创新项目计划(项目编号SCX2000-32)。
本项研究首先进行了国内外聚丙烯纤维混凝土的应用和研究情况的调研。
在此基础上,开展了对聚丙烯纤维混凝土力学性能、防裂性能、变形、韧性、抗渗、抗冻、耐磨、抗冲击、耐久性、聚丙烯纤维砂浆防裂以及增韧细观结构等性能的室内试验研究。
室内试验主要由南京水利科学研究院、浙江省水利水电河口海岸研究设计院及中科院寒区旱区环境与工程研究所冻土工程国家重点实验室等单位承担。
在开展室内试验的同时,由工程指挥部、设计院、施工工程局、施工监理等共同在溢洪道进口及二期面板1#、3#和9#试验块开展了施工工艺的试验研究。
在对聚丙烯纤维混凝土主要性能和施工工艺试验研究的基础上,于2000年邀请以中国工程院院士谭靖夷为首的专家组对白溪水库二期面板聚丙烯纤维混凝土试验研究进行了评审,专家组一致认为,试验技术路线正确、方法合理,所得结果可信。
试验成果表明,掺加聚丙烯纤维可以明显减少混凝土收缩和开裂,改善混凝土的变形性能和提高耐久性,在自然条件下,紫外线长期辐射不会造成聚丙烯纤维混凝土性能的退化。
聚丙烯纤维混凝土技术性能明显优于普通混凝土,增加的少量工程费用与取得的质量效益相比,经济上是可以接受的,建议在二期面板上应用。
经过设计部门同意,2000年10月至12月,完成了二期面板(∇128.5m以上)聚丙烯纤维混凝土的施工,混凝土方量达11000m3。
2001年3月下旬,又在溢洪道陡槽末端,进行了C40聚丙烯纤维混凝土和外掺硅粉抗磨蚀剂聚丙烯纤维混凝土的工程试验。
此外,还对喷射聚丙烯纤维混凝土技术进行了现场试验。
通过上述工作,已完成了水利部和宁波市2000年科技创新计划项目《聚丙烯纤维混凝土在水利工程上的应用研究》计划任务书规定的各项试验研究任务。