磁化率的测定1.实验目的1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。
1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。
2.实验原理2.1摩尔磁化率和分子磁矩物质在外磁场H作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。
物质0被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。
化学上常用摩尔磁化率χ表示磁化程度,它与χ的关系为m。
·mol-13M、ρ分别为物质的摩尔质量与密度。
χ的单位为m式中m物质在外磁场作用下的磁化现象有三种:。
当它受到=0第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,μm,相应产生一种与外磁场方向相反的感应磁矩。
如同线”外磁场作用时,内部会产生感应的“分子电流圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。
这种物质称为反磁性物质,如表示,且χ<0。
χCuHg,,Bi等。
它的χ称为反磁磁化率,用m反反第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分。
这些杂乱取向的分子磁矩μ≠0子磁矩m Cr,其方向总是趋向于与外磁场同方向,在受到外磁场作用时,这种物质称为顺磁性物质,如Mn,表示。
Pt等,表现出的顺磁磁化率用χ顺χχ但它在外磁场作用下也会产生反向的感应磁矩,因此它的是顺磁磁化率χ。
与反磁磁化率m顺之和。
因|χ|?|χ|,所以对于顺磁性物质,可以认为χ=χ,其值大于零,即χ>0。
mm顺顺反反第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。
这种物质称为铁磁性物质。
对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩μ关系可由居里-郎之万公式表示:m为真空,J·Kμ×10)mol10),、k为玻尔兹曼常数(1.3806×式中L为阿伏加德罗常数(6.022 --1231-230--27可作为由实验测定磁化率来研究物质内部结构,T为热力学温度。
式磁导率(4π×10((2-136)N·A 的依据。
分子磁矩由分子内未配对电子数n决定,其关系如下:-24-1(T为磁感应强度的单位,即特斯拉)J·T。
式中μ为玻尔磁子,是磁矩的自然单位。
μ=9.274 ×10 BB2+离子在自由离子状态下的外值后可以进一步判断有关络合物分子的配键类型。
例如,Fe 求得n6002+络离子,是电价络合[Fe(H0)]如以它作为中心离子与6个H层电子结构为3d04s配位体形成4p。
622+2。
如下图所示:离子仍然保持原自由离子状态下的电子层结构,此时物。
其中Fen=4Fe络离子,则是共价络合物。
这时其中[Fe(CN)]如果Fe个离子与6CN离子配位体形成6所--2+2+4示:n=0。
见图2-64离子的外电子层结构发生变化,对孤对电子,离子中的66个杂化轨道,它们能接受个d显然,其中6个空轨道形成CNsp的-326 形成共价配键。
摩尔磁化率的测定2.2,测定原理χ本实验用古埃磁天平测定物质的摩尔磁化率m 2所示。
如图的样、质量为hm的样品管,装入高度为一个截面积为A品后,放入非均匀磁场中。
样品管底部位于磁场强度最大之处,。
样品最高处磁场强度为即磁极中心线上,此处磁场强度为H零。
前已述及,对于顺磁性物质,此时产生的附加磁场与原磁.场同向,即物质内磁场强度增大,在磁场中受到吸引力。
设χ为空气的体积磁化率,可以证明,样品0管内样品受到的力为:考虑到ρ=m/hA,而χ值很小,相应的项可以忽略,可得0在磁天平法中利用精度为0.1mg的电子天平间接测量F值。
设△m为空样品管在有磁场和无磁场时0的称量值的变化,△m为装样品后在有磁场和无磁场时的称量值的变化,则)为重力加速度(9.81m·s。
可得式中、g-2磁场强度H可由特斯拉计或CT5高斯计测量。
应该注意,高斯计测量的实际上是磁感应强度B,单-14。
也可A·mH可由B =μH关系式计算得到,的单位为位为T(特斯拉),1T=10高斯。
磁场强度H0B? T用已知磁化率的莫尔氏盐标定。
莫尔氏盐的摩尔磁化率的关系为:与热力学温度m)为莫尔氏盐的摩尔质量(kg·mol。
式中M3.实验步骤-13.1打开励磁电源开关,电流表,打开电子天平的电源,并按下“清零”按钮,毫特斯拉计表头调零,然后调节磁场强度约为100mT,检查霍尔探头是否在磁场最强处,并固定其位置,使试管尽可能在两磁头中间(磁场最强处);3.2取一支清洁、干燥的空样品管,悬挂在天平一端的挂钩上,使样品管的底部在磁极中心连线上,准确称量空样品管;3.3慢慢调节磁场强度为300(mT),等电子天平读数稳定之后,读取电子天平的读数;3.4慢慢调节磁场强度读数至350(mT),读取电子天平的读数;3.5慢慢调节磁场强度读数高至400(mT),等30秒,然后下降至350(mT),读取电子天平的读数;,读取电子天平的读数;)mT(300将磁场强度读数降至3.6.再将磁场强度读数调至最小,读取电子天平的读数;3.7直到样品,使样品粉末填实)3.8取下样品管,装入莫尔氏盐(在装填时要不断将样品管底部敲击木垫,)时候电子天(mTmT高度至试管标记处,按照上面的步骤分别测量其在0()、300(mT)、350 平的读数;)再由大到小的测定方法,(注:上述调节电流由小到大、是为了抵消实验时磁场剩磁现象的影响。
样品的摩尔磁化率测定3.9硫酸亚铁3H用标定磁场强度的样品管分别装入样品1亚铁氰化钾K[Fe(CN)]·0和样品2246(mTmT)时候电子天平的读数。
、350()、300(mT)·FeS07H0,按上述相同的步骤测量其在024 4.数据记录与处理o C数据表:室温m/g称量0 300 400 350 350 0 磁场强度/mT30016.4904 / 16.4903 16.4946 空管16.4988 16.4928 16.502219.4014 19.5788 莫尔盐19.5363 19.3977 19.5825 / 19.535119.0375 19.0329 19.0382 19.0235 / 19.0331 亚铁氰化钾19.029019.307619.3048/硫酸亚铁19.531419.479519.539919.48474.1由上表数据分别计算样品管及样品在无磁场时的质量(m)和在不同磁场强度下的质量变化(△m):磁化强度/mT空管△m/g 莫尔盐△m/g 亚铁氰化钾△m/g硫酸亚铁△m/g0.0008 0.0084 -0.0017 0 0.00070.0052 0.0076 -0.0012 300 -0.0039-0.0085-0.0096350-0.0025-0.00374.2各样品在不同条件下的摩尔磁化率χ、分子磁矩μ并估算其不成对电子数n m根据求莫尔盐的摩尔磁化率:温度T=(24.9+273.15)KM=392.14g/mol M=278.02 g/mol M=422.39 g/mol )酸钾II莫尔盐六氰合铁(硫酸亚铁2/3kTμ=Lμχm0m7231-2312-24-1----=4π×10=9.274 ×μ10L=6.022 ×10molN·,k=1.3806×10J·KJ·,μAT,0B?910?9500-3-7B-1 3??4?莫尔氏盐的摩尔磁化率×××=392.1410=1.5710m/mol m1?T.=2.9837g = 3.0373g,m=2.5326g,m①当H=0.3T,m2样品1标样品M?m?m--9-131空管?样品1空管样品m ×χ=10/mol=-6.48?mx1样标标mm?m-?1空管样品标准?空管n=0 不存在,则小于0,所以μm因为χ1样Mm?m-?-82样品空管?样品2空管-1 3=mχ10=5.82×/mol m?x2样标标mm-?m?2空管样品标准空管?-1-23T10J·μ=3.08×m??n=2.47)?2n(n?Bm=3.0441g =2.5357g,m②当H=0.35T,m'=3.0891g,m21样品标样品Mmm-??-91空管样品?样品1空管-13 =-2.91χ=×10/molm?mx1样标标m-?m?m1空管样品标准空管?n=0,所以μ1小于0不存在,则μ因为χ样mm M?m?m--82样品空管空管?样品2-1 3=mχ/mol= 5.62×10m?x2样标标m-m?m?2样品空管标准空管?-1-23TJ·=3.03μ×10m??n=2.41)?(nn?2Bm2+-232 8 0失去两个2d26个电子个6CN[Ar]3s,sd3pp杂化FeFe4.3这个是本身带,配合上8-强配体,为0 2 2 2 2,故有,按能量最小分布,以及CN0电子,[Ar]2d对孤对电子,所以在0.3T和3.5T中,所测得的亚铁氰化钾的孤对电子数较为准确;4.4 FeSO*7HO的成单电子数为4,顺磁性。
显然,实验中所测的数据明显偏小,可能的24原因为:机器不稳定,调整的磁场不稳定;装样品时不均匀,测出来的数据不准确;标定空管时,标定出来的数据不准确。
5.误差分析实验所得结果与文献值比较符合,但还是存在一定的误差,造成误差的可能原因及需注意的事项有:1、由于实验实际操作时所使用的仪器已经没有玻璃门,故称量时应尽量不要有大动作的走动,或太多人围观、说话等,应该尽量保持整个称量过程是在没有太多干扰磁场的因素的环境下进行。
2、样品管一定要干净。
ΔW空管=W空管(H=H)-W空管(H=0)>0时表明样品管不干净,应更换。
装在样品管内的样品要均匀紧密、上下一致、端面平整、高度测量准确。
样品管的底部要位于磁极极缝的中心,与两磁极两端距离相等。
3、由于样品都是研磨完后一段时间才开始测量的,不排除样品会发生相应的吸水和失水,致使分子量会发生变化,使最后所计算出来的结果存在误差。
.4、测量样品高度h的误差严重影响实验的精度,这从摩尔磁化率的计算公式g Ma)ghW??W2(??EF?可以看出来。
而由于最上面的那些样品粉末不能压紧压平,测量高度hM2WH的误差还是比较大的。
g Ma gh??W?W)2(?EF?、装样不紧密也会带来较大误差——推导5公式时用到了密度ρ,最后M2WH表现在高度h中。