重排酮肟在酸性条件下发生重排生成烃基酰胺的反应。
1886年由德国化学家.贝克曼首先发现。
常用的贝克曼重排试剂有硫酸、五氯化磷、贝克曼试剂(氯化氢在乙酸-乙酐中的溶液)、多聚磷酸和某些酰卤等。
反应时酮肟受酸性试剂作用,形成一个缺电子氮原子,同时促使其邻位碳原子上的一个烃基向它作分子内 1,2-迁移,其反应过程如下:贝克曼重排是立体专一性反应。
在酮肟分子中发生迁移的烃基与离去基团(羟基)互为反位。
在迁移过程中迁移碳原子的构型保持不变,例如:贝克曼重排反应可用于确定酮类化合物的结构。
工业上利用环己酮肟发生贝克曼重排,大量生-己内酰胺,它是合成耐纶6(见聚己内酰胺)的单体。
亲电取代反应亲电取代反应一种亲电试剂取代其它官能团的化学反应,这种被取代的基团通常是氢,但其他基团被取代的情形也是存在的。
亲电取代是芳香族化合物的特性之一.芳香烃的亲电取代是一种向芳香环系,如苯环上引入官能团的重要方法。
其它另一种主要的亲电取代反应是脂肪族的亲电取代。
亲电加成反应亲电加成反应是烯烃的加成反应,是派电子与实际作用的结果。
派键较弱,派电子受核的束缚较小,结合较松散,因此的作为电子的来源,给别的反应物提供电子。
反应时,把它作为反应底物,与它反应的试剂应是缺电子的化合物,俗称亲电试剂。
这些物质又酸中的质子,极化的带正电的卤素。
又叫马氏加成,由马可尼科夫规则而得名:“烯烃与氢卤酸的加成,氢加在氢多的碳上”。
广义的亲电加成亲反应是由任何亲电试剂与底物发生的加成反应。
在烯烃的亲电加成反应过程中,氢正离子首先进攻双键(这一步是定速步骤),生成一个碳正离子,然后卤素负离子再进攻碳正离子生成产物。
立体化学研究发现,后续的卤素负离子的进攻是从与氢离子相反的方向发生的,也就是反式加成。
如丙烯与的加成:→ 2第一步,电离生成H和离子,氢离子作为亲电试剂首先进攻双键,形成这样的结构:第二步,由于氢已经占据了一侧的位置,溴只能从另外一边进攻。
根据马氏规则,溴与2-碳成键,然后氢打向1-碳的一边,反应完成。
马氏规则的原因是,取代基越多的碳正离子越稳定也越容易形成。
这样占主导的取代基多的碳就优先被负离子进攻。
水、硫酸、次卤酸等都可以进行亲电加成。
霍夫曼降解反应概念及特点霍夫曼降解反应霍夫曼降解反应指的是酰胺与次氯酸钠或次溴酸钠的碱溶液作用时,脱去羰基生成少一个碳的伯胺反应:₂+ + 2——→₂2₃+ + H2O由于在反应及过程中由于发生了亲核重排,所以又称为霍夫曼重排反应,具有光学活性的基团在重排后构型不变。
[1]柯提斯重排反应柯提斯重排反应柯提斯重排反应是一类亲核重排反应,反应中,羧酸与叠氮化物作用生成酰基叠氮化物再重排为异氰酸酯,异氰酸酯水解得到少一碳的伯胺,该反应可用于几乎所有羧酸,是制备伯胺的方法之一。
施密特重排反应施密特重排反应施密特重排反应指的是叠氮酸和羧酸在路易斯酸或硫酸的催化下重排生成异氰酸酯并水解生成少一碳伯胺的反应。
在实际操作中,叠氮酸有毒且极易爆炸,因此往往使用叠氮化钠、硫酸和反应物在氯仿中进行反应,该反应的产率随碳链的增长而增大,简单的芳香族羧酸不太适用。
沃尔夫重排反应沃尔夫重排反应沃尔夫重排反应指的是重氮酮在氧化银或光照催化下重排生成烯酮的亲核重排反应,重排过程中生成酮碳烯。
沃尔夫重排反应生成的烯酮有很高的反应活性,可与水、醇、氨等反应生成对应的羧酸或羧酸衍生物。
[1]沃尔夫重排是阿恩特-艾斯特尔特反应()的关键步骤。
脂肪族的亲电取代在脂肪族化合物的亲电反应中,亲电试剂进攻并取代反应物的一个官能团。
该反应与更为常见的脂肪族亲核取代反应类似,只不过进攻基团是亲电试剂而非亲核试剂。
脂肪亲电取代反应也可分为两种机制,即1和2,这与脂肪亲核取代反应可分为1和2是类似的。
典型的脂肪族亲电取代反应包括:酮上α-氢的卤代反应卡宾对碳-氢键的插入反应亲电重排反应亲电重排反应亲电重排反应属重排反应()的一种,又称“正离子重排反应”指基团以缺电子的形式迁移到富电子中心的重排反应。
亲电重排多为1,2-重排反应。
[1]亲电重排反应发生时首先通过去质子化形成富电子中心,随后迁移基团发生重排。
常见的亲电重排类型包括·法沃斯基重排反应()·斯蒂文斯重排反应()·维蒂希重排反应()·弗瑞斯重排反应()亲核重排反应亲核重排反应又称“缺电子重排”属重排反应()的一种,指基团以富电子的形式迁移到缺电子中心的重排反应。
常见的亲核重排是1,2-重排。
[1][2]亲核重排反应发生时首先形成碳、氮、氧的缺电子活性中心,随后迁移基团发生重排。
常见的亲核重排类型包括缺电子碳链的重排·拜耳-维利格氧化重排反应()·瓦格纳-迈尔外因重排反应()·捷米扬诺夫重排反应()·氢过氧化物重排反应()·贝克曼重排反应()·频哪醇重排反应()·苯偶酰重排反应()·达金反应()碳烯与氮烯的重排·霍夫曼降解反应()·柯提斯重排反应()·施密特重排反应()·沃尔夫重排反应()·洛森重排反应()立体化学亲核重排过程中迁移基团的光学活性保持不变双分子消除反应双分子消除反应(又名E2反应,E代表,而2代表反应速率受到二个化合物浓度的影响),为消除反应的一项反应机构,由于反应为一步形成,与二种反应物浓度皆有关,在反应动力学上是属于二级反应,故又称为“双分子消除反应”。
上图乙醇作为碱攻击β-氢。
溴带着共用电子对在离去基作用下离去,而氢以质子的方式离去。
如同2反应,反应由一步完成,但不同的是由碱来拉走质子,而并不是当作亲核试剂,碱进攻β-氢,并与离去基同时离去,生成烯烃。
而由于反应为一步完成,与二种反应物浓度皆有关,在反应动力学上是属于二级反应。
而因为E2反应不需侵入重围,攻击之中的碳原子,只需从旁拉走一个质子,因此立体阻碍在此并不如2反应般发生影响,因此在一、二、三级受质皆可发生反应,而因为E2反应不会产生碳阳离子,故不会发生重排现象。
E2反应为一步反应,因此碱的强弱对其反应速率有很显著的影响,越强的碱能使反应进行越快,而对于离去基来说,E2反应需要好的离去基方能进行反应,但离去基E2反应与2反应的比较:E2反应2反应反应类型消除反应取代反应反应级数二级反应二级反应立体障碍不受影响受影响亲核试剂随试剂碱度上升而反应增快随亲核基强度上升而反应增快离去基离去基越好反应越快离去基越好反应越快硝化反应硝化反应是向有机物分子中引入硝基(2)的反应过程。
脂肪族化合物硝化时有氧化-断键副反应,工业上很少采用。
硝基甲烷、硝基乙烷、1-和2-硝基丙烷四种硝基烷烃气相法生产过程,是30年代美国商品溶剂公司开发的。
迄今该法仍是制取硝基烷烃的主要工业方法。
此外,硝化也泛指氮的氧化物的形成过程。
硝化反应是向有机物分子中引入硝基(2)的反应过程。
脂肪族化合物硝化时有硝化反应的反应式氧化-断键副反应,工业上很少采用。
硝基甲烷、硝基乙烷、1-和2-硝基丙烷四种硝基烷烃气相法生产过程,是30年代美国商品溶剂公司开发的。
迄今该法仍是制取硝基烷烃的主要工业方法。
此外,硝化也泛指氮的氧化物的形成过程。
工业上应用较多的是芳烃的硝化,以硝基取代芳环()上的氢,可用以下通式表示:─3→─22O硝化方法(1)稀硝酸硝化一般用于含有强的第一类定位基的芳香族化合物的硝化,反应在不锈钢或搪瓷设备中进行,硝酸约过量10~65%。
(2)浓硝酸硝化这种硝化往往要用过量很多倍的硝酸,过量的硝酸必需设法利用或回收,因而使它的实际应用受到限制。
(3)浓硫酸介质中的均相硝化当被硝化物或硝化产物在反应温度下为固体时,常常将被硝化物溶解于大量浓硫酸中,然后加入硫酸和硝酸的混合物进行硝化。
这种方法只需要使用过量很少的硝酸,一般产率较高,缺点时硫酸用量大。
(4)非均相混酸硝化当被硝化物或硝化产物在反应温度下都是液体时,常常采用非均相混酸硝化的方法,通过强烈的搅拌,使有机相被分散到酸相中而完成硝化反应。
(5)有机溶剂中硝化这种方法的优点是采用不同的溶剂,常常可以改变所得到的硝基异构产物的比例,避免使用大量硫酸作溶剂,以及使用接近理论量的硝酸。
常用的有机溶剂有乙酸、乙酸酐、二氯乙烷等。
硝基苯的生产将苯、混酸和循环废酸分别经过转子流量计连续地送入第一硝化反应器,反应物流经第二和第三硝化反应器后进入连续分离器。
分出的硝基苯经水洗、碱洗、水洗、蒸馏即得工业品硝基苯。
分出的废酸一部分作为循环废酸送回第一硝化反应器,以吸收硝化反应释放的部分热量并使混酸稀释,以减少多硝基物的生成。
大部分废酸要另外浓缩成浓硫酸,再用于配制混酸。
硝基烷烃的生产烷烃硝化采用气相反应,将预热后的丙烷与液体硝酸同时送入反应器,在370~450°C和0.8~1.2条件下反应,反应在绝热反应器中进行。
利用过量的丙烷和酸的汽化移走反应热。
硝化产物经冷凝,液相产物先经化学处理再精制得四种硝基烷烃成品,气相产物分别送丙烷和氧化氮回收系统。
过程特点硝化要求保持适当的反应温度,以避免生成多硝基物和氧化等副反应。
硝化是放热反应,而且反应速率快,控制不好会引起爆炸。
为了保持一定的硝化温度,通常要求硝化反应器具有良好的传热装置。
混酸硝化法还具有以下特点:①被硝化物或硝化产物在反应温度下是液态的,而且不溶于废硫酸中,因此,硝化后可用分层法回收废酸;②硝酸用量接近于理论量或过量不多,废硫酸经浓缩后可再用于配制混酸,即硫酸的消耗量很小;③混酸硝化是非均相过程,要求硝化反应器装有良好的搅拌装置,使酸相与有机相充分接触;④混酸组成是影响硝化能力的重要因素,混酸的硝化能力用硫酸脱水值()或硝化活性因数()表示。
是混酸中的硝酸完全硝化生成水后,废硫酸中硫酸和水的计算质量比。
是混酸中硝酸完全硝化生成水后,废酸中硫酸的计算质量百分浓度。
高或高表示硝化能力强。
对于每个具体硝化过程,其混酸组成、或都要通过实验来确定它们的适宜范围。
例如苯硝化制硝基苯时,混酸组成(%)为:H2446~49.5,344~47,其余是水,2.33~2.58,70~72。
硝化反应器硝化过程在液相中进行,通常采用釜式反应器。
根据硝化剂和介质的不同,可采用搪瓷釜、钢釜、铸铁釜或不锈钢釜。
用混酸硝化时为了尽快地移去反应热以保持适宜的反应温度,除利用夹套冷却外,还在釜内安装冷却蛇管。
产量小的硝化过程大多采用间歇操作。
产量大的硝化过程可连续操作,采用釜式连续硝化反应器或环型连续硝化反应器,实行多台串联完成硝化反应。
环型连续硝化反应器的优点是传热面积大,搅拌良好,生产能力大,副产的多硝基物和硝基酚少。
产品用途硝基烷烃为优良的溶剂,对纤维素化合物、聚氯乙烯、聚酰胺、环氧树脂等均有良好的溶解能力,并可作为溶剂添加剂和燃料添加剂。