当前位置:文档之家› 物体碰撞中的动量守恒

物体碰撞中的动量守恒

物体碰撞中的动量守恒碰撞1.碰撞指的是物体间相互作用持续时间很短,而物体间相互作用力很大的现象.在碰撞现象中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.按碰撞前后物体的动量是否在一条直线上有正碰和斜碰之分,中学物理只研究正碰的情况.2.一般的碰撞过程中,系统的总动能要有所减少,若总动能的损失很小,可以略去不计,这种碰憧叫做弹性碰撞.其特点是物体在碰撞过程中发生的形变完全恢复,不存在势能的储存,物体系统碰撞前后的总动能相等。

若两物体碰后粘合在一起,这种碰撞动能损失最多,叫做完全非弹性碰撞.其特点是发生的形变不恢复,相碰后两物体不分开,且以同一速度运动,机械能损失显著。

在碰撞的一般情况下系统动能都不会增加(有其他形式的能转化为机械能的除外,如爆炸过程),这也常是判断一些结论是否成立的依据.3.弹性碰撞题目中出现:“碰撞过程中机械能不损失”.这实际就是弹性碰撞. 设两小球质量分别为m 1、m 2,碰撞前后速度为v 1、v 2、v 1/、v 2/,碰撞过程无机械能损失,求碰后二者的速度. 根据动量守恒 m 1 v 1+m 2 v 2=m 1 v 1/+m 2 v 2/ ……①根据机械能守恒 ½m 1 v 12十½m 2v 22= ½m 1 v 1/2十½m 2 v 2/2 ……②由①②得v 1/= ()21221212m m v m v m m ++-,v 2/= ()21112122m m v m v m m ++-仔细观察v 1/、v 2/结果很容易记忆, 当v 2=0时v 1/= ()21121m m v m m +-,v 2/= 21112m m v m + ①当v 2=0时;m 1=m 2 时v 1/=0,v 2/=v 1 这就是我们经常说的交换速度、动量和能量.②m 1>>m 2,v /1=v 1,v 2/=2v 1.碰后m 1几乎未变,仍按原来速度运动,质量小的物体将以m 1的速度的两倍向前运动。

③m 1《m 2,v /l =一v 1,v 2/=0. 碰后m 1被按原来速率弹回,m 2几乎未动。

【例1】试说明完全非弹性碰撞中机械能损失最多.解析:前面已经说过,碰后二者一起以共同速度运动的碰撞为完全非弹性碰撞. 设两物体质量分别为m 1、m 2,速度碰前v 1、v 2,碰后v 1/、v 2/由动量守恒:m 1v 1+m 2v 2=m 1v 1/十m 2v 2/……①损失机械能:Q=½m 1v 12+½m 2v 22-½ m 1 v 1/2-½ m 2 v 2/2 ……②由①得 m 1v 1+m 2v 1-m 2v 1+m 2v 2=m 1v 1/十m 2v 1/-m 2v 1/+m 2v 2/写成(m 1+m 2)v 1-m 2(v 1-v 2)=(m 1十m 2)v 1/-m 2(v 1/-v 2/)即(m 1+m 2)(v 1 -v 1/)= m 2[(v 1-v 2)-(v 1/-v 2/)]于是(v 1 -v 1/)= m 2[(v 1-v 2)-(v 1/-v 2/)]/ (m 1+m 2)同理由①得m 1v 1+m 1v 2-m 1v 2+m 2v 2=m 1v 1/十m 1v 2/-m 1v 2/+m 2v 2/写成(m 1+m 2)v 2+m 1(v 1-v 2)=(m 1十m 2)v 2/+m 1(v 1/-v 2/)(m 1+m 2)(v 2 -v 2/)= m 1[(v 1/-v 2/)-(v 1-v 2)](v 2 -v 2/)= m 1[(v 1/-v 2/)-(v 1-v 2)]/ (m 1+m 2)代入②得Q=½m 1v 12+½m 2v 22-½ m 1v 1/2-½ m 2v 2/2=½m 1(v 12-v 1/2)+½m 2(v 22-v 2/2) =½m 1(v 1-v 1/) (v 1+v 1/)+½m 2(v 2-v 2/)(v 2+v 2/)=½m 1(v 1+v 1/) m 2[(v 1-v 2)-(v 1/-v 2/)]/(m 1+m 2)+½m 2(v 2+v 2/)m 1[(v 1/-v 2/)-(v 1-v 2)]/(m 1+m 2)=[½m 1 m 2/(m 1+m 2)][ v 12-v 1v 2+v 1v 1/-v 2v 1/-v 1v 1/+v 1v 2/-v 1/2+v 1/v 2/+v 2v 1/-v 2v 2/-v 1v 2+v 22+v 1/v 2/-v 2/2-v 1v 2/+v 2v 2/]=[½m 1 m 2/(m 1+m 2)][ v 12-v 1v 2-v 1v 2+v 22-v 1/2+v 1/v 2/+v 1/v 2/-v 2/2]= [½m 1 m 2/(m 1+m 2)][(v 1-v 2)2-(v 1/-v 2/)2]()()()22//121212122m m v v v v m m ⎡⎤=---⎣⎦+……③ 由③式可以看出:当v 1/= v 2/时,损失的机械能最多.【例2】如图所示,一轻质弹簧两端各连接一质量均为m 的滑块A 和B ,两滑块都置于光滑水平面上.今有质量为m/4的子弹以水平速度V 射入A 中不再穿出,试分析滑块B 何时具有最大动能.其值为多少?解析:对子弹和滑决A 根据动量守恒定律 mv/4=5mv //4所以v /=v/5。

当弹簧被压缩后又恢复原长时,B 的速度最大,具有的动能也最大,此过程动能与动量都守恒/5544A B mv mv mv =- /2221515124242A B mv mv mv ⨯=⨯+⨯ 由①②得:v B =2v/9 所以 B 的动能为E kB =2mv 2/81答案:弹簧被压缩又恢复原长时;E kB =2mv 2/81【例3】甲物体以动量P 1与静止在光滑水平面上的乙物体对心正碰,碰后乙物体的动量为P 2,则P 2和P 1的关系可能是( )A .P 2<P 1;B 、P 2= P 1C . P 2>P 1;D .以上答案都有可能解析:此题隐含着碰撞的多种过程.若甲击穿乙物体或甲、乙两物体粘在一起匀速前进时有P 2<P 1;若甲乙速度交换时有P 2= P 1;若甲被弹回时有P 2>P 1;故四个答案都是可能的.而后三个答案往往漏选答案:ABCD【例4】如图所示,在支架的圆孔上放着一个质量为M 的木球,一质量为m 的子弹以速度v 0从下面竖直向上击中子弹并穿出,使木球向上跳起高度为h ,求子弹穿过木球后上升的高度。

【解析】把木球和子弹作为一个系统研究,在子弹和木球相互作用时间内,木球和子弹要受到重力作用,显然不符合动量守恒的条件。

但由于子弹和木球间的作用力(内力)远大于它们的重力(外力),可以忽略重力作用而认为系统动量守恒。

设子弹刚穿过木球时,子弹的速度为v 1,木球的速度为v 2,竖直向上为正方向。

对系统,据动量守恒:mv=mv 1+Mv 2……①木球获得速度v后,上升的过程机械能守恒:½Mv 22=Mgh……②两式联立得1v =子弹射穿木球后的上升过程机械能守恒:½mv 12=mgH ,将v 1代入得子弹上升的最大高度: (2022mv H gm -=【例5】有两块大小不同的圆形薄板(厚度不计)质量分别为M 和m ,半径分别为R 和r ,两板之间用一根长为0.4m 的轻绳相连结.开始时,两板水平放置并叠合在一起,静止于高度为0.2m 处如图(a )所示.然后自由下落到一固定支架C 上,支架上有一半径为R /(r <R /<R =的圆孔,圆孔与两薄板中心在圆板中心轴线上,木板与支架发生没有机械能损失的碰撞,碰撞后,两板即分离,直到轻绳绷紧.在轻绳绷紧瞬间,两物体具有共同速度V ,如图4一22(b )所示.问:(l )若M=m ,则v 值为多大.(2)若M/m=k ,试讨论v 的方向与k 值间的关系.解析:M 、m 与固定支架碰撞前的自由下落,所以v 02=2ghv 0=20102⋅⨯⨯=2 m /s碰撞后,M 原速返回向上作初达v 0的匀减速运动,m 作初速为v 0向下匀加速运动.设绳刚要绷直时,M 的速度为v 1,上升的高度为h1,m 的速度为v 2,下降的高度为h 2,经历时间为t ,则:v 1=v 0一gt …………① v 12=v 02一2g h 1 ……② v 2=v 0+gt………③ v 22=v 02一2g h 2 …………④ 又h l +h 2=0.4…………⑤由上五式解得:v 2=3 m/s , v 1=1m/s在绳绷紧瞬间,时间极短,重力的冲量忽略不计,则M 与m 组成的系统动量守恒.设向下为正.则mv 2-Mv 1=(M +m )v , 即 v=mM Mv mv +-12 (1)当M =m 时,v =1m/s (2)当M/m =k 时.V=kk +-13 讨论:k <3时,v >0两板向下运动, k >3时,v <0 两板向上运动, k =3时,v =0两板瞬时静止【例6】如图所示,一辆质量M=2 kg 的平板车左端放有质量m=3 kg 的小滑块,滑块与平板车之间的动摩擦因数µ=0.4,开始时平板车和滑块共同以v 0=2m/s 的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反.平板车足够长,以至滑块不会滑到平板车右端.(取g =10 m/s 2)求:(1)平板车第一次与墙壁碰撞后向左运动的最大距离;(2)平板车第二次与墙壁碰撞前瞬间的速度v 2;(3)若滑块始终不会滑到平板车右端,平板车至少多长.解析:平板车第一次与竖直墙壁发生碰撞后速度大小保持不变,但方向与原来相反.在此过程中,由于时间极短,故滑块m 的速度与其在车上的位置均未发生变化.此外,由于相对运动,滑块m 和平板车间将产生摩擦力,两者均做匀减速运动,由于平板车质量小,故其速度减为0时,滑块m 仍具有向右的不为0的速度,此时起,滑块m 继续减速,而平板车反向加速一段时间后,滑块M 和平板车将达到共同速度,一起向右运动,与竖直墙壁发生第二次碰撞……(1)设平板车第一次碰墙壁后,向左移动s ,速度减为0.(由于系统总动量向右,平板车速度为0时,滑块还具有向右的速度).根据动能定理有:一½µmgs 1=0一½Mv 02 代入数据得:2201221220.43103Mv s m mg μ⨯===⨯⨯⨯ (2)假如平板车在第二次碰墙前还未和滑块相对静止,那么其速度的大小肯定还是 2 m/s ,滑块的速度则大于2 m/s ,方向均向右,这显然不符合动量守恒定律.所以平板车在第二次碰墙前肯定已和滑块具有共同速度v 2.此即平板车碰墙瞬间的速度mv 0一Mv 0=(M +m )v 2,20010.4/5m M v v v m s m M -===+ (3)平板车与墙壁第一次碰撞后到滑块与平板车又达到共同速度v 前的过程,可用图(a) (b) (c )表示.图(a)为平板车与墙碰撞后瞬间滑块与平板车的位置,图(b)为平板车到达最左端时两者的位置,图(c )为平板车与滑块再次达到共同速度时两者的位置.在此过程中滑块动能减少等于摩擦力对滑块所做功µmgs /,平板车动能减少等于摩擦力对平板车所做功µmgs //(平板车从B 到A 再回到B 的过程中摩擦力做功为0),其中s' ,s"分别为滑块和平板车的位移.滑块和平板车动能总减少为µmgL ,其中L =s /+s //为滑块相对平板车的位移.此后,平板车与墙壁发生多次碰撞,每次情况与此类似,最后停在墙边.设滑块相对平板车总位移为L,则有:½(M +m)v 02=µmgL,()220525220.43106M m v L m mg μ+⨯===⨯⨯⨯ L 即为平板车的最短长度.。

相关主题