当前位置:文档之家› 转录及转录调控

转录及转录调控

8/3/2020
(二)转录延长 1. 与原核生物大致相似,
没有转录与翻译同步的现象。 2. RNA-pol前移,核小体移位和解聚现象。
8/3/2020
核小体
RNA-Pol

转录方向






RNA-Pol




RNA-Pol
8/3/2020
(三)转录终止 —— 和转录后修饰密切相关。
转录终止修饰点: DNA读码框架下游的一组AATAAA和GT共同
原核生物启动子保守序列
8/3/2020
转录起始点
1、 转录开始的位置
超过90%的转录起始点为嘌呤核苷酸,在转录 起始点有一保守序列:MCATMM,A是转录 始点。 M:A或C或G
8/3/2020
—10序列
2、 —10序列,位于转录起始位点上游— 10bp左右,有一个6个碱基组成的保守 序列TATAAT,是RNA聚合酶结合的部 位,又称为TATA盒或Pribnow盒。
8/3/2020
转录起始过程:
2. DNA局部解链 RNA聚合酶挤入DNA双链中,解链长度约
12~17个核苷酸, 拓扑异构酶参与。 形成开放转录复合物(二元复合物)
8/3/2020
转录起始过程:
3. 在RNA聚合酶作用下发生第一次聚合反应, 形成转录起始复合物。
5-pppG -OH + NTP 5-pppGpN - OH 3 + ppi
8/33/42020
发夹式结构和寡聚U的共同作用使RNA从三元 复合物中解离出来。
8/33/52020
终止效率与 二重对称序列 (至少6bp)和 寡聚U(至少4个 U)的长短有关, 长度↑,终止效 率↑。
8/33/62020
8/3/2020
2. 不依赖因子的终止
8/3/2020
8/3/2020
启动子
转录单位
终止子
+1
转录起点
编码区(开放阅读框)
转录终点
8/3/2020
不对称转录(asymmetric transcription) * 在DNA分子双链上某一区段,一股 链可转录,另一股链不转录; * 模板链并非永远在同一单链上。
8/3/2020
8/3/2020
8/3/2020
8/3/2020
1. 亚基脱落,RNA–pol聚合酶核心酶变构, 与模板结合松弛,沿着DNA模板前移;
2. 在核心酶作用下,NTP不断聚合,RNA链 不断延长。 (NMP) n + NTP (NMP) n+1 + PPi
3. 转录空泡的形成:
8/3/2020
转录空泡(transcription bubble):
A
B
C
D
编码区 A、B、C、D
非编码区 8/3/2020
8/3/2020
8/3/2020
RNA编辑的生物学意义:
扩充遗传信息 产生多种表达产物,产生多种生物学效应, 产生功能用途的分化。
DNA上的基因数要比表达的蛋白质种 类少。估计10万个基因,实际3万个基因。
8/3/2020
8/3/2020
不依赖因子的终止机制
8/3/2020
第三节 真核生物转录
8/3/2020
一、真核生物转录酶及相关因子
(一)真核生物的RNA聚合酶
种类



转录产物 45S-rRNA hnRNA 5S-rRNA 某些 snRNA tRNA、snRNA
对鹅膏蕈 (xun)碱
的反应
耐受
极敏感
中度敏感
8/3/2020
第三章 转录及其调控
湖北理工学院医学院 教师: 苏振宏
生物化学 Biochemistry
第一节 转录的基本原理
转录 ( transcription ) ——生物体以DNA为
模板合成RNA的过程。
DNA
转录
RNA
8/3/2020
转录单位
转录单位:一个转录区段可视为一个转录单位,包括 若干个结构基因及其上游的调控序列。
转录起始需解决两个问题: 1. RNA聚合酶必须准确地结合在转录模板的起
始区域。
2. DNA双链解开,使其中的一条链作为转录的 模板。
8/3/2020
转录起始过程:
1. 辨认起始位点: 亚基辨认启动子的-35区,RNA聚合酶全
酶(2)与模板疏松结合。 酶滑行到-10区,通过亚基与模板牢固
结合。 形成闭合转录复合物(二元复合物)
相关概念
模板链(template strand)有意义链或Watson链: DNA双链中,能按碱基配对规律指引转录,生成RNA的 一股单链。
编码链(coding strand)反义链或Crick链: DNA双链 中碱基序列与RNA一致的一股链。
结构基因
转录方向
编码链 模板链
转录方向
模板链 编码链
特点:不同的启动子,其位置略有不同 不同的启动子,每个碱基出现的频率不 同。
8/3/2020
—35序列
3、—35序列:位于转录起始位点上游35bp处, 故称—35序列,有一个6个碱基组成的保守序 列TTGACA.
➢ 不同启动子的—35序列的每个碱基出现的频率 不同。
➢ —35序列是RNA聚合酶初始结合的部位 ➢ —35序列的核苷酸结构决定了启动子的强度
转录起始复合物(三元复合物): RNA聚合酶-DNA 模板-四磷酸二核苷酸
RNApol (2) - DNA - 5'pppGpN- OH 3
8/3/2020
● 原核生物转录起始复合物
σ因子与核心酶形成全酶,σ因子发现起始 位点,全酶与-35序列结合,酶分子向-10序 列转移并牢固结合。形成闭合转录复合物
8/3/2020
高度的忠实性(high fidelity)
转录的忠实性是指一个特定基因的转录具有 固定的起点和固定的终点,而且被转录产生的剪 基序列,严格遵守碱基互补原则。
然而,转录出错率高于复制出错率 原因:RNA聚合酶没有校读功能
8/3/2020
高度的进行性(highly progressive)
8/3/2020
4、作用部位间隔区
-35序列和-10序列之间的间隔区碱基序列对转录起始并 不重要。
➢ -35序列和-10序列之间的间隔区长度对转录很重要。
➢ 实验结果表明: -35序列和-10序列之间的间隔区长度 为17bp时转录效率最高。
大多数启动子为16~18bp
8/3/2020
一、原核生物转录的起始
8/3/2020
帽子结构: (m7GpppGp —) 7-甲基鸟嘌呤-三 磷酸鸟苷
8/3/2020
➢ 此外还可以形成帽子1,帽子2等 ➢ 第一第二位的核苷酸的2’-O位上被甲基化形成帽子1,
帽子2,
8/3/2020
帽子结构的功能:
核内生成, 保护mRNA不被核酸外切酶水解。 与翻译过程有关,帽子结构结合蛋白是翻
RNA聚合酶 核糖体
原核生物转录过程中的现象
8/3/2020
三、转录终止
RNA聚合酶在DNA模板上停止前进, 转录产物RNA链从转录复合物上脱落。
机制 依赖Rho (ρ)因子的转录终止
非依赖Rho因子的转录终止
8/3/2020
1.依赖因子的终止
因子:又称释 放因子,六聚体 蛋白,可以水解 NTP,其解旋酶 促使新生RNA链 从三元转录复合 物中解离出来, 从而终止转录。
8/3/2020
RNA聚合酶保护区 结构基因
5
3
3
5
5
3
-50 -40 -30 -20 -10 1 10
3
5
-35 区
-10 区
开始转录
TTGACA AA C T G T
T A T A A T Pu A T A T T A Py
RNA-pol辨认位点 (Pribnow box) (recognition site)
8/3/2020
亚基
ω
分子量
36512 150618 155613 11000 70263
功能
决定哪些基因被转录 催化功能
结合DNA模板 功能尚不清楚 辨认起始点
σ亚基结合位点:-35序列 β‘亚基结合位点:-10序列
(二) ρ因子
1969年Roberts研究发现的控制转录终止的蛋白质。
正常的转录一旦发生,就不会中途停止,转录终止 前RNA聚合酶不从模板链解离下来
一旦RNA聚合酶从模板链解离,则解离下来的 酶不可能与解离点重新结合
8/3/2020
第二节 原核生物转录
8/3/2020
一、原核生物转录相关结构和酶
(一)原核生物的RNA聚合酶
核心酶 core
enzyme
全酶 holoenzyme
序列, 参与转录终止过程, 这些序列称之为转录终 止修饰点。
8/3/2020
mRNA
Poly (A)
3加尾
核酸酶
3’
5’
5’ AATAAA GTGTGTG
RNA-pol
3’
转录终止的修饰点
8/3/2020
一、 mRNA的转录后加工
(一)首、尾的修饰 1、5 端形成 帽子结构 5 m7GpppGp — ( NTP ) n
8/33/12020
因子的终止的作用机制
8/3/2020
8/33/32020
2. 不依赖因子的终止
➢ 终止子富含GC反向序列出现转录延宕;
➢ RNA聚合酶是由一个挂在DNA上滑行的环带动着前进的,而这个环恰好可以容下DNA单连,不能 通过比较粗的茎环结构
相关主题