当前位置:文档之家› 物理动量定理专项及解析

物理动量定理专项及解析

物理动量定理专项及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B Cmv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2CN v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I .【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.3.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。

比荷为c 的带正电的粒子在点(0,l )以初速度v 0沿+x 方向射入磁场,不计粒子重力。

(1)若在t =0时刻,粒子射入;在t <02T 的某时刻,粒子从点(l ,2l )射出磁场,求B 0大小。

(2)若B 0=02c v l ,且粒子从0≤l ≤02T的任一时刻入射时,粒子离开磁场时的位置都不在y轴上,求T 0的取值范围。

(3)若B 0= 02c v l ,00l T v π=,在x >l 的区域施加一个沿-x 方向的匀强电场,在04T t =时刻入射的粒子,最终从入射点沿-x 方向离开磁场,求电场强度的大小。

【答案】(1)00v B cl =;(2)00l T v π≤;(3)()20421v E n cl π=+()0,1,2n =L .【解析】 【详解】设粒子的质量为m ,电荷量为q ,则由题意得qc m=(1)粒子在磁场中做匀速圆周运动,设运动半径为R ,根据几何关系和牛顿第二定律得:R l =2000v qv B m R=解得00v B cl=(2)设粒子运动的半径为1R ,由牛顿第二定律得20001v qv B m R =解得12l R =临界情况为:粒子从0t =时刻射入,并且轨迹恰好过()0,2l 点,粒子才能从y 轴射出,如图所示设粒子做圆周运动的周期为T ,则002m lT qB v ππ== 由几何关系可知,在02T t =内,粒子轨迹转过的圆心角为 θπ=对应粒子的运动时间为1122t T T ππ== 分析可知,只要满足012T t ≥,就可以使粒子离开磁场时的位置都不在y 轴上。

联立解得0T T ≤,即00lT v π≤;(3)由题意可知,粒子的运动轨迹如图所示设粒子的运动周期为T ,则002m lT qB v ππ== 在磁场中,设粒子运动的时间为2t ,则21144t T T =+由题意可知,还有00244T T t =+ 解得0T T =,即00lT v π=设电场强度的大小为E ,在电场中,设往复一次所用的时间为3t ,则根据动量定理可得302Eqt mv =其中3012t n T ⎛⎫=+ ⎪⎝⎭()0,1,2n =L解得()2421v E n clπ=+()0,1,2n =L4.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。

求(1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。

【答案】(1)20N ∙s ,方向竖直向下(2)m/s ⋅, 与水平方向的夹角为45° 【解析】 【详解】(1)物体做平抛运动,则有:212h gt =解得:t =2s则物体从抛出到落到地面过程重力的冲量I=mgt =1×10×2=20N•s方向竖直向下。

(2)在竖直方向,根据动量定理得I=p y -0。

可得,物体落地时竖直方向的分动量p y =20kg•m/s物体落地时水平方向的分动量p x =mv 0=1×20=20kg•m/s故落地时物体的动量m/s p ==⋅设落地时动量与水平方向的夹角为θ,则1y xp tan p θ==θ=45°5.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力. 【答案】78N 【解析】 【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ; v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s 0-v 2=-gt 2 得t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft ′-mg t ′=mv 2-(-mv 1) 其中t ′=t -t 1-t 2=0.05s 得F =78N由牛顿第三定律得F ′=-F ,所以小球对钢板的作用力大小为78N ,方向竖直向下;6.质量为70kg 的人不慎从高空支架上跌落,由于弹性安全带的保护,使他悬挂在空中.已知人先自由下落3.2m ,安全带伸直到原长,接着拉伸安全带缓冲到最低点,缓冲时间为1s ,取g =10m/s 2.求缓冲过程人受到安全带的平均拉力的大小. 【答案】1260N 【解析】 【详解】人下落3.2m 时的速度大小为8.0m /s v ==在缓冲过程中,取向上为正方向,由动量定理可得()0()F mg t mv -=--则缓冲过程人受到安全带的平均拉力的大小1260N mvF mg t=+=7.如图,有一个光滑轨道,其水平部分MN 段和圆形部分NPQ 平滑连接,圆形轨道的半径R =0.5m ;质量为m 1=5kg 的A 球以v 0=6m/s 的速度沿轨道向右运动,与静止在水平轨道上质量为m 2=4kg 的B 球发生碰撞,两小球碰撞过程相互作用的时为t 0=0.02s ,碰撞后B 小球恰好越过圆形轨道最高点。

两球可视为质点,g =10m/s 2。

求:(1)碰撞后A 小球的速度大小。

(2)碰撞过程两小球间的平均作用力大小。

【答案】(1)2m/s (2)1000N 【解析】 【详解】(1)B 小球刚好能运动到圆形轨道的最高点:222v m g m R=设B 球碰后速度为2v ,由机械能守恒可知:22222211222m v m gR m v =+ A 、B 碰撞过程系统动量守恒:101122m v m v m v =+ 碰后A 速度12/v m s =(2)A 、B 碰撞过程,对B 球:022Ft m v =得碰撞过程两小球间的平均作用力大小 1000F N =8.电磁弹射在电磁炮、航天器、舰载机等需要超高速的领域中有着广泛的应用,图1所示为电磁弹射的示意图.为了研究问题的方便,将其简化为如图2所示的模型(俯视图).发射轨道被简化为两个固定在水平面上、间距为L 且相互平行的金属导轨,整个装置处于竖直向下、磁感应强度为B 的匀强磁场中.发射导轨的左端为充电电路,已知电源的电动势为E ,电容器的电容为C ,子弹载体被简化为一根质量为m 、长度也为L 的金属导体棒,其电阻为r .金属导体棒,其电阻为r .金属导体棒垂直放置于平行金属导轨上,忽略一切摩擦阻力以及导轨和导线的电阻.(1)发射前,将开关S 接a ,先对电容器进行充电. a .求电容器充电结束时所带的电荷量Q ;b .充电过程中电容器两极板间的电压y 随电容器所带电荷量q 发生变化.请在图3中画出u-q 图像;并借助图像求出稳定后电容器储存的能量E 0;(2)电容器充电结束后,将开关b ,电容器通过导体棒放电,导体棒由静止开始运动,导体棒离开轨道时发射结束.电容器所释放的能量不能完全转化为金属导体棒的动能,将导体棒离开轨道时的动能与电容器所释放能量的比值定义为能量转化效率.若某次发射结束时,电容器的电量减小为充电结束时的一半,不计放电电流带来的磁场影响,求这次发射过程中的能量转化效率η.【答案】(1)a .Q CE =;b .;2012E CE =(2)223B L C mη=【解析】(1)a 、根据电容的定义QC U=电容器充电结束时其两端电压U 等于电动势E ,解得电容器所带电荷量Q CE = b 、根据以上电容的定义可知qu C=,画出q-u 图像如图所示:有图像可知,稳定后电容器储存的能量0E 为图中阴影部分的面积012E EQ =,将Q 代入解得2012E CE =(2)设从电容器开始放电至导体棒离开轨道时的时间为t ,放电的电荷量为Q ∆,平均电流为I ,导体棒离开轨道时的速度为v根以导体棒为研究对象,根据动量定理0BLIt mv =-,(或BLi t m v ∑∆=∑∆), 据电流定义可知It Q =∆(或i t Q ∑∆=∆) 根据题意有1122Q Q CE ∆==,联立解得2BLCE v m=导体棒离开轨道时的动能()22128kBLCE E mv m == 电容器释放的能量222113228E CE CU CE ∆=-=联立解得能量转化效率223k E B L CE mη==∆9.质量为200g 的玻璃球,从1.8m 高处自由下落,与地面相碰后,又弹起1.25m ,若球与地面接触的时间为0.55s ,不计空气阻力,取g=10m/s 2。

相关主题