当前位置:文档之家› 调频接收机的设计1

调频接收机的设计1

1、主要内容利用集成电路接收机设计基本的点频(调频)接收机电路。

通过本次电路设计,掌握调频接收机电路的设计及调试方法,了解集成电路单片接收机的性能及应用,进而加深对高频电子线路课程理论知识的理解,训练、提高电路设计及电子实践能力。

2、基本要求利用集成电路接收机设计基本的点频(调频)接收机电路。

电路的技术指标为: (1) 工作频率 6.5MHz s f =; (2) 输出功率0.3W o P =(8L R =Ω); (3) 中频10.7MHz I f =; (4) 灵敏度10μV 。

3、主要参考资料[1] 阳昌汉. 高频电子线路. 哈尔滨:高等教育出版社,2006.[2] 张肃文,陆兆雄. 高频电子线路(第三版). 北京:高等教育出版社,1993. [3] 谢自美. 电子线路设计·实验·测试. 武汉:华中科技大学出版社,2000. [4] 高吉祥. 电子技术基础实验与课程设计. 北京:电子工业出版社,2002.完成期限 2月28日-3月4日 指导教师 专业负责人2011 年 2 月 25 日一、电路原理:调频接收机是一种信号质量比较好的收音机,可以进行立体声接收,因其电波是直线传播,所以,传播距离近是最大的缺点,不适宜接收远距离电台1、电路原理及用途调频接收机的工作原理图一 调频接收机组成框图一般调频接收机的组成框图如图一所示。

其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。

本机振荡器输出的另一高频 f2亦进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。

混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。

由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。

:由超再生调频接收、FM-AM 变换部分、调幅检波及低放电路组成。

调频波的超再生接收,实际上就是将调频波转换成调幅波,同时对调幅波进行包络检波以得到低频信号。

图中的三极管VTl 及外围元件组成典型的超再生调频接收电路,并将调频波信号转换成调幅信号以及进行包络检波输出音频信号。

如果直接从R3端取出包络检波后的音频信号进行放大,得到的音频噪声比较大,但使接收机的选择性变差。

因此,这里采用从VT1的发射极通过串联回路中的高频扼流圈上感应到的调幅信号再进行高频放大、检波输出音频信号的方法,以克服上述不足。

当VT1工作时,在高频扼流圈上会形成一个被调频节目调制的调幅信号。

这个信号通过互感器T1耦合到调幅专用接收微型IC1 7642上进行调幅波的解调。

这块集成电路包含了一级高阻输入、三级高频放大及检波输出的全过程,而且增益大于70dB 。

检波输出的音频信号由电容C9耦合到三极管VT2进行低频放大,通过耳机插座CZ 输出到负载(耳机)收听广播节目。

高频扼流圈T2作用是防止高频信号与电池及其他部分形成回路而被衰减,但对音频信号却无阻碍作用。

电容C6为小型瓷介微调电容,焊接时要求把动片接在图中的A 端,目的是减小调台时人体感应对调谐回路的影响。

高频电感L1采用Φ1.0mm 的漆包线在Φ5.0mm 的圆棒上绕3圈脱胎而成。

高频扼流互感器T1选用从旧机中拆下的AM-IFT 微型中周绕制,把原来绕制在“工”字形磁心上的漆包线拆下,再用ΦO.07mm 的高强度漆包线重绕,初级高频扼流部分绕约50圈,次级感应部分绕约150圈后加上调节磁帽及外屏蔽即可。

高频扼流圈T2选用双孔磁环,用Φ0.2mm 的漆包线在各孔中各绕10圈制成。

先通过调节R1把VT1的集电极电流调为0.3mA —0.5mA ,调节电阻R7使VT2的集电极电流约为2mA 。

此时用耳机便可收听到“丝丝”流水响声(电噪声),通过调节C6的电容量来收听调频台的广播节目。

细调L1匝距和T1的磁帽,使音质音量最好。

2、主要技术指标:利用集成电路接收机设计基本的点频(调频)接收机电路的技术指标为: (1) 工作频率 6.5MHz s f =; (2) 输出功率0.3W o P =(8L R =Ω); (3) 中频10.7MHz I f =; (4) 灵敏度10μV 。

二、设计步骤和调试过程:1、总体设计电路:(1)高频功率放大电路如下图所示为共射级接法的晶体管高频小信号放大器。

他不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的负载为LC 并联谐振回路。

在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响的频率和相位。

晶体管的静态工作点由电阻RA2,RA3,RA4及RA6决定,其计算方法与低频单管放大器相同。

从天线ANTA1接收到的高频信号经过CA1、CCA1、LA1组成的选频回路,选取信号为fs=10.7MHZ 的有用信号,经晶体管QA1进行放大,由CA3、TA1初级组成的调谐回路,进一步滤除无用信号,将有用信号经变压器和CB1耦合进入MC3361。

口输入,载波信号从端口输入,,从端输出振幅调制信号.(3)中频放大电路中频放大电路的任务是把变频得到的中频信号加以放大,然后送到检波器检波。

中频放大电路对超外差收音机的灵敏度、选择性和通频带等性能指标起着极其重要的作用。

下图(a)是LC单调谐中频放大电路,图(b)为它的交流等效电路。

图中B1、B2为中频变压器,它们分别与C1、C2组成输入和输出选频网络,同时还起阻抗变换的作用,因此,中频变压器是中放电路的关键元件。

中频变压器的初级线圈与电容组成LC并联谐振回路,由于并联谐振回路对诣振频率的信号阻抗很大,对非谐振频率的信号阻抗较小。

所以中频信号在中频变压器的初级线圈上产生很大的压降,并且耦合到下一级放大,对非谐振频率信号压降很小,几乎被短路(通常说它只能通过中频信号),从而完成选频作用,提高了接收机的选择性。

由LC调谐回路特性知,中频选频回路的通频带B=f2- f1=fd/QL,式中Q L是回路的有载品质因数。

Q L值愈高,选择性愈好,通频带愈窄;反之,通频带愈宽,选择性愈差。

(4)鉴频电路下图是回路鉴频器的原理图。

它是由三个调谐回路组成的调频-调幅调频变换电路和上下对称的两个振幅检波器组成。

初级回路谐振于调频信号的中心频率 ,其通带较宽。

(5)MC3361的功能介绍:在本实验中采用了MC3361芯片,所以工作原理中的混频、中频放大、鉴频、低频放大等其他功能电路全部由MC3361实现MC3361是美国MOTOROLA公司生产的单片窄带调频接收电路,主要应用于语音通讯的无线接收机。

片内包含振荡电路、混频电路、限幅放大器、积分鉴频器、滤波器、抑制器、扫描控制器及静噪开关电路。

主要应用在二次变频的通讯接收设备。

其主要特性如下:a低功耗(在Vcc=4.0V,耗电典型值仅为3.9mA)b极限灵敏度:2.6uV(-3bB)(典型值)c 少量的外接元件d工作电压:2.0—8.0Ve DIP16和SO-16两种封装形式f 工作频率:60MHz(max)MC3361内部电路如下 :MC3361集成电路采用16脚双列直插式封装。

它具有较宽的电源电压范围(2~9V),能在2V低电源电压条件下可靠地工作,耗电电流小(当Vcc=3.6V时,静态耗电电流典型值为2.8mA),灵敏度高(在2.0μV输入时典型值为-3dB),音频输出电压幅值大。

它的内电路结构框图如图1所示。

IC内设置有双平衡双差分混频器、电容三点式本机振荡器、六级差动放大器构成的调频455kHz宽带中频限幅放大器、双差分正交调频鉴频器、音频放大器及静噪控制电路。

MC3361的内部振荡电路与Pin1和Pin2的外接元件组成第二本振级,第一中频IF输入信号10.7MHz从MC3361的Pin16输入,在内部第二混频级进行混频,其差频为:10.700-10.245=0.455MHz,也即455kHz第二中频信号。

第二中频信号由Pin3输出,由455kHz陶瓷滤波器选频,再经Pin5送入MC3361的限幅放大器进行高增益放大,限幅放大级是整个电路的主要增益级。

Pin8的外接元件组成455kHz鉴频谐振回路,经放大后的第二中频信号在内部进行鉴频解调,并经一级音频电压放大后由Pin9输出音频信号。

Pin12——Pin15为载频检测和电子开关电路,通过外接少量的元件即可构成载频检测电路,用于调频接收机的静噪控制。

MC3361内部还置有一级滤波信号放大级,加上少量的外接元件可组成有源选频电路,为载频检测电路提供信号,该滤波器Pin10为输入端,Pin11为输出端。

Pin6和Pin7为第二中放级的退耦电容。

(6)画出完整的电路左右的调制信号,则从TTB1处用示波器可观测到输出的解调波。

(4).当从TTB1处观察鉴频输出信号,此时如果波形失真可以微调LB1和微调L84。

注意观察鉴频信号频率与调制信号频率是否一致,幅度大小与调制频偏的关系(调制频率可以通过改变调制信号大小来改变)。

如果TTB1处的信号失真,一般要考虑是否调制信号幅度过大以及变容二极管调频产生的调频信号的中心频率偏高10.7MHz太远。

1)设置静态工作点由于放大器工作在小信号放大状态,而且有下式:U BQ =Rb1/(Rb1+Rb2)VCCI EQ =(UBQ-UBEQ)/Re=ICQU CEQ =Vcc-ICQ(Rc+Re)IBQ=ICQ/β取晶体管的静态工作点:IEQ=1.5mAUEQ=3VUCEQ=9V则RE =UEQ/IE=1.5KΩ则RA6=1.5kΩ取流过RA3的电流基极电流的7倍,则有:RA3=UBQ /7IBQ=17.6K取18KΩ则RA2+WA1=(12-3.7)/3.7*18=40K则取RA2=5.1K WA1选用50K的可调电阻以调整静态工作点 2)计算谐振回路参数其中 gbe ={IE}mA/26βS=1.15mSGm ={IE}mA/26S=58mSYie= (gbe+jwcbe)/[1+rbe(gbe+jwcbe)] =1.373*10-3S+j2.88*10-3S则有 gie =1.373ms rie=1/gie=728ΩCie=2.88mS/w=22.5pFY oe =(jwcbbcbcgm)/[1+rbb(gbe+jwcbe)]+jwcbe=0.216mS+j1.37mS则有 goe =0.216mS coe=1.37mS/w=10.2pF计算回路总电容CΣCΣ=1/(2πf0)2L=1/[(2*3.14*10.7*106)2*1.8*10-6] =123pFC=CΣ-p12Coe-p22Cie=120-0.432*22.5-10.2=119pF则有 CA3=119pF 取标称值120pF3)确定耦合电容及高频滤波电容高频电路中的耦合电容及滤波电容一般选取体积较小的瓷片电容,现取耦合电容CA2=0.001uF,旁路电容CA4=0.1uF,滤波电容CA5=0.1uF电压增益:A V0=-u/ui=-p1p2yfe/gΣ=-p1p2yfe/p12goe+p22gie+G=(N2=-N1)dB通频带:BW=2Δf0.7=f/QL放大器的选择性:K r0.1=B0.1/B0.73、仿真及仿真结果分析:利用模拟示波器测试混频输出信号4设计电路的性能评测输入数据,经过仿真后,得到设计要求的技术指标:达到了能够恢复调制发射机的原始信号。

相关主题