第1章引言、设计任务描述、思路及方案1.1引言在本次设计中,其目的是得到一个超外差调频接收机机。
在超外差式调频接收机的设计过程中,应将其分为高频放大、混频、本振、中放、限幅、鉴频、低频放大七个部分。
整个电路的设计必须注意几个方面。
选择性好的级,应尽可能靠近前面,因在干扰及信号都不大的地方把干扰抑制下去,效果最好。
如干扰及信号很大,则由于晶体管的非线性,将产生严重的组合频率及其他非线性失真,这时滤除杂波比较困难。
为此,在高级接收机中,输入电路常采用复杂的高选择电路。
1.2设计任务描述设计题目:超外差式调频接收机1设计目的:巩固已学的理论知识,能够建立无线调频接收机的整机概念,了解调频接收机整机各单元电路之间的关系及相互影响,正确设计、计算接收机的各个单元电路。
2基本要求:(1)设计一个超外差式调频接收机,(2)设计指标1、接收频率范围 85~108MHz2、灵敏度≤1mV3、选择性≥50dB4、频率特性通频带为200KHz5、输出功率≥100mW1.3设计思路根据此次课程设计的要求,我设计的是超外差式调频接收机。
整个电路由六部分组成,分别为高频放大、混频、本振、中放、鉴频、低频放大。
(1)高频放大:高频放大器是用来放大高频信号的器件(在接收机中,高放所放大的对象是已调信号,它除载频信号外还有边频分量)。
根据高放的对象是载频信号这一情况,一般采用管子做放大器件,而且并联谐振回路作为负载,让信号谐振在信号载频(若有边频分量,便要设计回路的通频带能通过边频,使已调信号不失真)。
这样做的好处是:1)回路谐振能抑制干扰;2)并联回路谐振时,其阻抗很大,从而可输出很大的信号。
(2)混频:混频是将高频放大信号和本振信号混合,输出一个中频信号,在调频电路中,本振信号必须是独立的,这是与调幅电路最大的一个区别。
混频电路是一种典型的频谱搬移电路,可以用相乘器和带通滤波器来实现这种搬移。
(3)本振:本振电路用LC谐振回路来产生一个稳定的本地振荡频率,将这个稳定的谐振频率与高频放大输出信号混频,得到一个中频信号。
(4)中放:如果外来信号和本机振荡相差不是预定的中频,就不可能进入放大电路。
因此在接收一个需要的信号时,混进来的干扰电波首先就在变频电路被剔除掉,加之中频放大电路是一个调谐好了的带有滤波性质的电路,所以接收机的选择性指标很高。
超外差式接收机能够大大提高收音机的增益、灵敏度和选择性。
因为不管电台信号频率如何都变成为中频信号,然后都能进入中频放大级,所以对不同频率电台都能够进行均匀地放大。
中放的级数可以根据要求增加或减少,更容易在稳定条件下获得高增益和窄带频响特性。
此外,由于中频是恒定的,所以不必每级都加入可变电容器选择电台,避免使用多联同轴可变电容器,而只需在调谐回路和本振回路用一只双连可变电容器就可完成接收。
(5)鉴频:在鉴频器部分,采用比例鉴频器,普通鉴频器的线性范围较宽,调整较易,但在鉴频器前必须加上一级限幅器,而比例鉴频器则不需要但是为了得到良好的限幅特性,必须仔细调整比例鉴频器的工作状态与电路参数,也可以在前一级加一个限幅器。
(6)限幅:本次设计的限幅电路采用二极管限幅器。
(7)低频放大:一般从鉴频器输出的信号都比较小,为了得到我们所需的信号,必须将输出信号进行放大。
一般采用三极管放大电路来实现这一功能。
因为本次设计是音频信号,所以采用运算放大器效果比较好。
高频电路很容易受到干扰,所以对信号的要求比较高,在中频放大器电路的输出端,如果直接接鉴频器,很可能得到很多不需要的波形,用滤波器很难滤除,所以在鉴频器的输入端加一级限幅器,去除不需要的波,使输出更为纯净。
1.4设计方案方案一:电路的开始部分是由高频放大电路和本振信号混频,输出一个中频信号。
因为这是超外差调频接收机,所以混频电路和调幅接收机有着明显的不同,在调频电路中,本振电路是独立的。
在放大电路部分,采用场效应管共源极放大电路。
本振电路才用LC振荡电路,两个信号分别输入混频器,得到一个中频信号。
为了得到高的增益,而整个电路的增益取决于中放,同时也抑制了邻近干扰。
在中频放大电路的输出端,接一个限幅器,其目的是如果直接接鉴频器,很可能得到很多不需要的波形,用滤波器很难滤除,所以在鉴频器的输入端加一级限幅器,去除不需要的波,使输出更为纯净。
鉴频器是将原调制信号解调出来,在本次设计中采用比例鉴频器。
为了能够得到我们所需要的效果,在电路的最后采用低频放大电路。
超外差式收音机的中频放大电路采用了固定调谐的电路,这 - 特点使它比其他接收机优越得多,综合起来有如下优点:(1) 用作放大的中频,可以选择那些易于控制的、有利于工作的领率 ( 我国采用的中频频率为 465 千赫 ) ,以便适合于管子和电路的性质,能够得到较为稳定和最大限度的放大量。
(2) 各个波段的输入信号都变成了固定的中频,电路将不因外来频率的差异而影响工作,这样各个频带就能够得到均匀的放大,这对于频率相差很大的高频信号 ( 短波 ) 来说,是特别有利的。
(3) 如果外来信号和本机振荡相差不是预定的中频,就不可能进入放大电路。
因此在接收一个需要的信号时,混进来的干扰电波首先就在变频电路被剔除掉,加之中频放大电路是一个调谐好了的带有滤波性质的电路,所以接收机的选择性指标很高方案二:电路的开始部分和方案一基本一样,都是将高频放大信号和本振信号经过混频器,输出一个中频信号。
在中频放大电路设计中,采用两级以上的中频放大电路。
鉴频器采用比例鉴频器,所以在鉴频器的输入端不使用限幅器,比例鉴频器的效果比普通鉴频好很多,所以可以不使用限幅器。
在整个电路的最后,还是采用三极管放大电路。
综合考虑,第一种方案更适合我,利用第一种方案可以很好的利用我本学期所学的知识。
所以我采用第一种方案。
第2章设计总体方案2.1 工作原理在超外差式调频接收机的设计过程中,应将其分为高频放大、混频、本振、中放、限幅、鉴频、低频放大七个部分。
整个电路的设计必须注意几个方面。
选择性好的级,应尽可能靠近前面,因在干扰及信号都不大的地方把干扰抑制下去,效果最好。
如干扰及信号很大,则由于晶体管的非线性,将产生严重的组合频率及其他非线性失真,这时滤除杂波比较困难。
为此,在高级接收机中,输入电路常采用复杂的高选择电路。
为了使混频和本振分别调到最佳状态,要采用单独的本振。
超外差式接收机能够大大提高接收机的增益、灵敏度和选择性。
因为不管电台信号频率如何都变成为中频信号,然后都能进入中频放大级,所以对不同频率电台都能够进行均匀地放大。
中放的级数可以根据要求增加或减少,更容易在稳定条件下获得高增益和窄带频响特性。
此外,由于中频是恒定的,所以不必每级都加入可变电容器选择电台,避免使用多联同轴可变电容器,而只需在调谐回路和本振回路用一只双连可变电容器就可完成选台。
超外差电路的典型应用是超外差接收机,其优点是:①容易得到足够大而且比较稳定的放大量。
②具有较高的选择性和较好的频率特性。
③容易调整。
缺点是电路比较复杂,同时也存在着一些特殊的干扰,如像频干扰、组合频率干扰和中频干扰等。
随着集成电路技术的发展,超外差接收机已经可以单片集成。
2.2 电路方框图第3章各部分电路分析3.1 高频放大电路高频放大器是用来放大高频信号的器件,在接收机中,高频放大器放所放大的对象是已调信号,它除载频信号外还有边频分量)。
根据高放的对象是载频信号这一情况,一般采用管子做放大器件,而且并联谐振回路作为负载,让信号谐振在信号载频(若有边频分量,便要设计回路的通频带能通过边频,使已调信号不失真)。
这样做的好处是:1)回路谐振能抑制干扰;2)并联回路谐振时,其阻抗很大,从而可输出很大的信号。
对高放的主要要求是:(1) 工作稳定:放大器可能会产生正反馈,它影响放大器的稳定工作,严重时,会引起振荡,使放大器变成振荡器,从而完全破坏了放大器的正常工作。
因此,在正常工作中要保证放大器远离振荡状态而稳定的工作。
(2)选择性好,有一定的通频带。
(3)失真小,增益高,并且工作频率变化时增益变动不应过大,工作频率越高,晶体管的放大能力越小,增益越低。
增益变化太大时,则灵敏度相差将很悬殊。
高频放大电路如图3.1所示。
图3.1.1 高频放大电路图中了L 、C 、CT1及CT2为输入、输出回路元件,他们均调谐于信号频率,R及Cs 为自编元件,决定工作点。
L N 及N C 为中和元件。
在高频时,为了抵消dgC 之反馈,采用了L N 及N C 。
当1N e NwL wL wC -=(即L N 及N C 串联的谐振频率低于工作频率w ,L N 于N C 之路呈感性)且等效电感e L 之感抗值e wL 与1dg wC 相等时,则N I 与r I 数值相等,符号相反,互相抵消。
调节N C 可使e wL =1dgwC 。
gs C图3.1.2 等效电路 图3,1.1中管子用交流等效电路代替,图中未考虑dg C ,即不考虑反馈,只考虑正向放大,由此图可求出输出电压。
图3.1.2中M C 为接线电容,ds C 为漏极输出电容,2ds T M C C C C +++与L 谐振,其谐振电阻为0R ,将i R 与0R =00Q w L 合并为000m L gs U k g R U ==(00//L i R R R =),便得谐振时的输出电压为 00m gs L U g U R =于是电压增益为000m L gsU k g R U == 对场效应管,主要关心电压增益,至于功率增益,由于放大器的输入电流很小,输入端就不消耗什么功率,因而功率增益很高,于是功率增益便不太重要。
本次设计的高频放大电路运用的核心器件是场效应管。
场效应管放大器有以下优点:(1) 场效应管栅流小,输入阻抗高, p k 大。
(2) 放大时工作在ds i 几乎不随ds u 改变的区域,输出阻抗高。
(3) 因输入输出阻抗高,故回路可直接与管子相连,而不一定要经过阻抗变换器。
当然,在频率相当高时,因输入输出阻抗急剧下降,并且为了匹配,场效应管亦应通过阻抗变换网络与回路相连。
(4) 内部反馈比晶体管小。
这是因为反馈导纳比普通晶体管的小。
在频率很高时,通过dg C 的反馈较大,这时可用中和法消除dg C 的影响。
(5) 场效应管的转移特性为平方曲线,不产生包络失真、交叉调制、三阶互调,阻塞电平可达3-4V 。
当然,实际特性不可能是理想平方曲线,因而总会有些失真,不过他比一般的晶体管要小的多。
(6) 噪声系数小。
3.2 本振电路在本次设计中,采用改进型电容三点式振荡电路。
因为本振电路的输出频率要与高频放大电路的输出信号进行混频,得到一个中频信号。
所以要求本振电路的输出频率必须很稳定,所以采用了改进型电容三点式。
如果本振电路的输出不稳定,将引起变频器输出信号的大小改变,振荡频率的漂移将使中频改变。