当前位置:文档之家› 线性电路分析中受控电源的等效方法

线性电路分析中受控电源的等效方法

线性电路分析中受控电源的等效方法
摘 要:利用等效变换把受控源支路等效为电阻或电阻与独立电压源串联组合 求解含有受控源的现行电路。

关键词:受控电源;等效变换;独立电源
前言:
在求解含有受控源的线性电路中,存在着很大的局限性.下面就此问题作进一步的探讨.
受控源支路的电压或电流受其他支路电压、电流的控制.受控源又间接地影响着电路中的响应.因此,不同支路的网络变量间除了拓扑关系外,又增加了新的约束关系,从而使分析计算复杂化.如何揭示受控源隐藏的电路性质,这对简化受控源的计算是非常重要的.本文在对受控源的电路性质进行系统分析的基础上,给出了含受控源的线性电路的等效计算方法.
正文:根据受控源的控制量所在支路的位置不同,分别采取如下3种等效变换法. 1. 1. 当电流控制型的受控电压源的控制电流就是该受控电压源支路的电流、
或当电压控制型的受控电流源的控制电压就是该受控电流源支路两端的电压时,该受控源的端电压与电流之间就成线性比例关系,其比值就是该受控源的控制系数.因此,可采用置换定理,将受控源置换为一电阻,再进一步等效化简. 例1-1:如图求解图a 中所示电路的入端电阻R AB .
+
_R 2u 1
R 1
-u
A B
i
gu 1a +
解:首先,将电压控制型的受控电流源gu 1与R 1并联的诺顿支路等效变化成电压控制型的受控电压源gu 1R 1与电阻R 1串联的等效戴维南支路,如图b 所示.在电阻R 1与电阻R 2串联化简之前,应将受控电压源的控制电压转换为端口电流i ,即u 1=-R 2i .然后,将由电压u 1控制的电压控制型受控电压源gu 1R 1转化为电流控制型的受控电压源-gR 1R 2i ,如图c 所示.由图c 可知,由于该电流控制型的受控电压源的控制电流i 就是该受控电压源支路的电流,因此,可最终将该电流控制型的受控电压源简化成一个电阻,其阻值为-gR 1R 2.这样,该一端口网络的入
端电阻R AB =R 1+R 2-gR 1R 2.
+_
R 2
u 1
R 1
-u
A
B
i
gu 1
a
+
_
B
+_
+-u 1
R 2R 1
gR 1u 1
u
i
b
+
+-B
+--gR 1R 2i i
u
c
例1—2 例1—2 求解图a 中所示电路的入端电阻R AB .
1
1
1
2
22+-+-
U12
U1
4+-u 1A B
a
解:可对该一端口网络连续运用戴维南-诺顿等效变换,最后可得到图 b 所示
的电路.由于电压控制型的受控电流源
u1 8Ω的控制量u1就是它的端电
压,且二者的假定正方向相反,因此,可将其简化为一阻值为-8Ω的电阻.这样,该一端口网络的入端电阻
R AB =1/(1 2+1 2-1 8)=8 7
1
1
1
1
2
22+-+-U12
U1
4+-u 1A B
a
2
2
A
B
+_
u 1U18
b
2. 2. 受控源的控制量为网络的端口电压或电流时,可将各支路进行等效变
换,可将受控源作为独立源处理.当电路等效到端口时,若控制量是端口电流,则可将电路等效成受控电压源、独立电压源和电阻的串联组合;若控制量是端口电压,则可将电路等效成受控电流源、独立电流源和电阻的并联组合.再进一步将受控源置换为一电阻,最后可求出最简单的等效电路. 例2—1 例2—1 简化图a 所示电路.
Z Z
Z
a
U
i
10i
10i 2
2
1
a
解:先将图4a的受控电流源化为等效的受控电压源,合并后得到图4b所示电路.将图4b的受控电压源化为等效的受控电流源,再合并后得到图4c.因控制量是端口电流,将电路等效成受控电压源和电阻的串联组合,得到图4d.最后,将受控源置换为一电阻-8Ω(如前所述),则:
R AB =-8+4 5= -36 5(Ω)
由此可知,图 a所示的一端口网络对外电路而言,相当于RAB=-36/5Ω的一只负电阻.
Z Z
Z
a
U
i
10i
10i 2
2
1
a
Z
Z
-
+
40i
4
1
i
u Z
a
b
0.8
10i
i
U
c
Z
i
0.8
8i
-
+
Rab
d
3. 3.受控源的控制量支路为网络中任意其他支路时,在含受控源的线性电路
中,为了保持受控源两条支路之间的耦合关系不变,在求解电路时一般要保留控制量所在的支路,这对电路的分析计算带来许多限制,为此,我们提出将受控源等效置换成独立电源的形式,使其不受电路结构的限制.
在一个网络中控制量与网络变量之间的关系是由电路结构确定的,并被基尔霍夫定律互连约束和欧姆定律元件约束于电路中.
在分析电路时,可以将原控制量变换为另一个新的控制量而不会改变电路的状态,即可用受控电压源的电流或受控电流源的端电压作为受控源新的控制量.新控制量与原控制量之间为线性关系,它是由基尔霍夫定律和欧姆定律确定的.
对电压控制型受控电压源VCVS可等效为
u2=μu1=μ(m1+n1i)=μm1+μn1i
对电压控制型受控电压源CCVS可等效为
u2=ri1=r(m2+n2i)=rm2+rn2i
对电压控制型受控电压源VCCS可等效为
i2=gu1=g(m3+n3u)=gm3+gn3u
对电压控制型受控电压源CCCS可等效为
i 2=βi 1=β(m 4+n 4u )=βm 4+βn 4u
式中:i,u ——受控电压源的电流和受控电流源的电压,即为受控源新的控
m 1,m 2,m 3,m 4——常数,表示独立源的等效作用;
n 1,n 2,n 3,n 4——常数,表示两支路响应间的转移系数. 由上式得出如图受控源的等效变换形式.
-+u 2+-1µn 1i VCVS
a
u 2
+
-2rn 2
CCVS
b
+-i gm 3
gn 3i 2
+u VCCS
c
βm 4βn 4
u CCCS
d
+i 2
从图中可见,受控电压源可用一独立电压源(其电压等于μm 1或rm 2)与一个电阻(其阻值等于μn 1或rn 2)的串联组合支路来等效,受控电流源可用一独立电流源(其电流等于gm 3或βm 4)与一个电导(其电导等于gn 3或βn 4)的并联组合支路来等效.其等效电路中的电源数值为原网络中独立电源的线性组合,而电阻参数与原网络中其他某些元件参数相关.
从上述分析可知:受控源的电源与独立源的电源有所不同,独立源的电源是电路中的激励,有了它才能在电路中产生电流和电压;而受控源的电源则不同,它的电压或电流受其他电压或电流的控制,并最终受控于独立源,当独立源为零时,受控源也失去了电源的作用.
例3—1见图a 所示电路中虚线框出的电路部分能否用戴维南定理来化简?
解:显然,要保留受控源两条支路之间的耦合关系,有虚线框的部分是无法用戴维南定理简化的,但若对受控源等效变换后,则可以简化.现分析如下(电流单位为mA ).
将受控电流源与R3=6kΩ的电阻并联等效为受控电压源与R3的串联组合,如图b 所示.
b 式中,U k =2×103U 1×6×10-3=12U 1=12I 1R 1=12I 1×10-3×2×103=24I 1(V)列出节点a 电流方程I k +I s =I 1,即I 1=6+I k (mA),则
U k =24I 1=24(6+I k )=144+24I k (V)
因此,受控源的受控支路可用U S =144V 的电压源与R k =24kΩ的电阻串联来等效代替,见图c .该电路虚线框图中的电路可用戴维南定理来简化,其等效电路如图d 虚线框图所示,Us’=Us -E=144-12=132
R i =R k +R 3=24+6=30(kΩ)
12U 1
R
U
R
I
I
R 2 5K
2×10-3U i
E
R i 2K
12V
R 3
6K
I 1
I 2
a
c
d
通过计算,变换前后外电路各支路电流、电压(I 1均为2.1mA ,Uab ,均为4.2V ),可验证等效变换的正确性.
小结:
由以上分析可知,受控源可以用等效的独立电源或一个阻抗置换,且不影响等效部分对外电路的影响。

等效变换后的电源参数为原网络中独立电源的线性组合,阻抗参数与网络中的某些元件参数相关。

受控源等效的关键在于找出受控源支路的伏安关系,这种方法不受电路结构的限制,可以简化计算过程,为含受控源电路的分析与计算提供一种新方法。

R
I
R
R
E
U
a
b
I
R
I
R
R
R
E
U。

相关主题