磁场对电流的作用力题型一 安培定则的应用及磁场的叠加【例1】 (2017·高考全国卷Ⅰ)如图,三根相互平行的固定长直导线L 1、L 2和L 3两两等距,均通有电流I ,L 1中电流方向与L 2中的相同,与L 3中的相反.下列说法正确的是( )A .L 1所受磁场作用力的方向与L 2、L 3所在平面垂直B .L 3所受磁场作用力的方向与L 1、L 2所在平面垂直C .L 1、L 2和L 3单位长度所受的磁场作用力大小之比为1∶1∶ 3D .L 1、L 2和L 3单位长度所受的磁场作用力大小之比为3∶3∶1【变式】(2017·高考全国卷Ⅲ)如图,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l .在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零.如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为( )A .0B .33B 0 C .233B 0D .2B 0 题型二 导体运动趋势的判断【例2】一个可以自由运动的线圈L 1和一个固定的线圈L 2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L 1将( )A .不动B .顺时针转动C .逆时针转动D .在纸面内平动【变式1】.(2019·唐山模拟) 将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右D .3ILB π,水平向左【变式2】如图所示,把轻质导线圈用绝缘细线悬挂在磁铁N 极附近,磁铁的轴线穿过线圈的圆心且垂直线圈平面.当线圈内通以图中方向的电流后,线圈的运动情况是( )A .线圈向左运动B .线圈向右运动C .从上往下看顺时针转动D .从上往下看逆时针转动题型三 安培力作用力下的平衡或加速问题 安培力作用下导体的平衡问题 【例4】.如图所示,两平行光滑金属导轨MN 、PQ 间距为l ,与电动势为E 、内阻不计的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面的夹角为θ,回路其余电阻不计.为使ab 棒静止,需在空间施加一匀强磁场,其磁感应强度的最小值及方向分别为( )A .mgR El ,水平向右 B.mgR cos θEl,垂直于回路平面向上 C .mgR tan θEl ,竖直向下 D.mgR sin θEl,垂直于回路平面向下 【变式1】如图所示,有两根长为L 、质量为m 的细导体棒a 、b ,a 被水平放置在倾角为45°的光滑斜面上,b 被水平固定在与a 在同一水平面的另一位置,且a 、b 平行,它们之间的距离为x .当两细棒中均通以电流为I 的同向电流时,a 恰能在斜面上保持静止,则下列关于b 的电流在a 处产生的磁场的磁感应强度的说法正确的是( )A .方向竖直向上B .大小为2mg 2LIC .要使a 仍能保持静止,而减小b 在a 处的磁感应强度,可使b 上移D .若使b 下移,a 将不能保持静止【变式2】如图所示,一劲度系数为k 的轻质弹簧,下面挂有匝数为n 的矩形线框abcd ,bc 边长为l ,线框 的下半部分处在匀强磁场中,磁感应强度大小为B ,方向与线框平面垂直(在图中垂直于纸面向里),线框中 通以电流I ,方向如图所示,开始时线框处于平衡状态.令磁场反向,磁感应强度的大小仍为B ,线框达到 新的平衡,则在此过程中线框位移的大小Δx 及方向是( )A .Δx =2nBIl k ,方向向上B .Δx =2nBIl k,方向向下 C .Δx =nBIl k ,方向向上 D .Δx =nBIl k,方向向下 安培力作用下导体的加速问题【例5】.(2019·山西太原模拟)一金属条放置在相距为d 的两金属轨道上,如图所示.现让金属条以v 0的初速度从AA ′进入水平轨道,再由CC ′进入半径为r 的竖直圆轨道,金属条到达竖直圆轨道最高点的速度大小为v ,完成圆周运动后,再回到水平轨道上,整个轨道除圆轨道光滑外,其余均粗糙,运动过程中金属条始终与轨道垂直且接触良好.已知由外电路控制流过金属条的电流大小始终为I ,方向如图中所示,整个轨道处于水平向右的匀强磁场中,磁感应强度为B ,A 、C 间的距离为L ,金属条恰好能完成竖直面内的圆周运动.重力加速度为g ,则由题中信息可以求出( )A .金属条的质量B .金属条在磁场中运动时所受的安培力的大小和方向C .金属条运动到DD ′时的瞬时速度 D .金属条与水平粗糙轨道间的动摩擦因数【变式1】光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道向右由静止开始运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N【变式2】如图所示,两平行导轨ab 、cd 竖直放置在匀强磁场中,匀强磁场方向竖直向上,将一根金属棒PQ 放在导轨上,使其水平且始终与导轨保持良好接触.现在金属棒PQ 中通以变化的电流I ,同时释放金属棒PQ 使其运动.已知电流I 随时间变化的关系为I =kt (k 为常数,k >0),金属棒PQ 与导轨间的动摩擦因数一定.以竖直向下为正方向,则下面关于金属棒PQ的速度v、加速度a随时间变化的关系图象中,可能正确的是()参考答案题型一安培定则的应用及磁场的叠加【例1】(2017·高考全国卷Ⅰ)如图,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与L3中的相反.下列说法正确的是()A.L1所受磁场作用力的方向与L2、L3所在平面垂直B.L3所受磁场作用力的方向与L1、L2所在平面垂直C.L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶ 3D.L1、L2和L3单位长度所受的磁场作用力大小之比为3∶3∶1【答案】BC【解析】由安培定则可判断出L2在L1处产生的磁场(B21)方向垂直L1和L2的连线竖直向上,L3在L1处产生的磁场(B31)方向垂直L1和L3的连线指向右下方,根据磁场叠加原理,L3和L2在L1处产生的合磁场(B合1)方向如图a所示,根据左手定则可判断出L1所受磁场作用力的方向与L2和L3的连线平行,选项A错误;同理,如图b所示,可判断出L3所受磁场(B合3)作用力的方向(竖直向上)与L1、L2所在的平面垂直,选项B正确;同理,L2处的磁场方向如图c所示.设一根长直导线在另一根导线处产生的磁场的磁感应强度大小为B,根据几何知识可知,B合1=B,B合2=B,B合3=3B,由安培力公式可知,L1、L2和L3单位长度所受的磁场作用力大小与该处的磁感应强度大小成正比,所以L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶3,选项C正确,D错误.【变式】(2017·高考全国卷Ⅲ)如图,在磁感应强度大小为B0的匀强磁场中,两长直导线P和Q垂直于纸面固定放置,两者之间的距离为l.在两导线中均通有方向垂直于纸面向里的电流I时,纸面内与两导线距离均为l的a点处的磁感应强度为零.如果让P中的电流反向、其他条件不变,则a点处磁感应强度的大小为()A.0 B.33B0 C.233B0 D.2B0【答案】 C【解析】导线P和Q中电流I均向里时,设其在a点产生的磁感应强度大小B P=B Q=B1,如图所示,则其夹角为60°,它们在a 点的合磁场的磁感应强度平行于PQ 向右、大小为3B 1.又根据题意B a =0,则B 0=3B 1,且B 0平行于PQ 向左.若P 中电流反向,则B P 反向、大小不变,B Q 和B P 大小不变,夹角为120°,合磁场的磁感应强度大小为 B ′1=B 1(方向垂直PQ 向上、与B 0垂直),a 点合磁场的磁感应强度B =B 20+B ′21=233B 0,则A 、B 、D 项均错误,C 项正确.【名师点睛】求解有关磁感应强度的三个关键(1)磁感应强度―→由磁场本身决定.(2)合磁感应强度―→等于各磁场的磁感应强度的矢量和(满足平行四边形定则).(3)牢记判断电流的磁场的方法―→安培定则,并能熟练应用,建立磁场的立体分布模型.题型二 导体运动趋势的判断【例2】一个可以自由运动的线圈L 1和一个固定的线圈L 2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L 1将( )A .不动B .顺时针转动C .逆时针转动D .在纸面内平动【答案】 B【解析】 法一:电流元分析法把线圈L 1沿水平转动轴分成上下两部分,每一部分又可以看成无数段直线电流元,电流元处在L 2产生的磁场中,根据安培定则可知各电流元所在处的磁场方向向上,由左手定则可得,上半部分电流元所受安培力均指向纸外,下半部分电流元所受安培力均指向纸内,因此从左向右看线圈L 1将顺时针转动.法二:等效分析法把线圈L 1等效为小磁针,该小磁针刚好处于环形电流I 2的中心,小磁针的N 极应指向该点环形电流I 2的磁场方向,由安培定则知I 2产生的磁场方向在其中心处竖直向上,而L 1等效成小磁针后,转动前,N 极指向纸内,因此小磁针的N 极应由指向纸内转为向上,所以从左向右看,线圈L 1将顺时针转动.法三:结论法环形电流I 1、I 2之间不平行,由于两不平行的电流的相互作用,则两环必有相对转动,直到两环形电流同向平行为止,据此可得,从左向右看,线圈L 1将顺时针转动.【变式1】.(2019·唐山模拟) 将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右 D .3ILB π,水平向左 【答案】D.【解析】弧长为L ,圆心角为60°,则弦长AC =3L π,导线受到的安培力F =BIl =3ILB π,由左手定则可知,导线受到的安培力方向水平向左.【变式2】如图所示,把轻质导线圈用绝缘细线悬挂在磁铁N 极附近,磁铁的轴线穿过线圈的圆心且垂直线圈平面.当线圈内通以图中方向的电流后,线圈的运动情况是( )A .线圈向左运动B .线圈向右运动C .从上往下看顺时针转动D .从上往下看逆时针转动【答案】A【解析】.法一:电流元法.首先将圆形线圈分成很多小段,每一段可看做一直线电流元,取其中上、下两小段分析,其截面图和受安培力情况如图甲所示.根据对称性可知,线圈所受安培力的合力水平向左,故线圈向左运动.只有选项A 正确. 法二:等效法.将环形电流等效成小磁针,如图乙所示,根据异名磁极相吸引知,线圈将向左运动,A 正确.也可将左侧条形磁铁等效成环形电流,根据结论“同向电流相吸引,异向电流相排斥”,也可判断出线圈向左运动.题型三 安培力作用力下的平衡或加速问题 安培力作用下导体的平衡问题【例4】.如图所示,两平行光滑金属导轨MN 、PQ 间距为l ,与电动势为E 、内阻不计的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面的夹角为θ,回路其余电阻不计.为使ab 棒静止,需在空间施加一匀强磁场,其磁感应强度的最小值及方向分别为( )A .mgR El ,水平向右 B.mgR cos θEl,垂直于回路平面向上 C .mgR tan θEl ,竖直向下 D.mgR sin θEl,垂直于回路平面向下 【答案】D.【解析】以导体棒为研究对象,受力分析如图所示,由金属棒ab 受力分析可知,为使ab 棒静止,ab 受到沿斜面向上的安培力作用时,安培力最小,此时对应的磁感应强度也就最小,由左手定则可知此时磁场方向垂直于回路平面向下,再由平衡关系可知IlB =mg sin θ,其中I =E R,可得磁感应强度B =mgR sin θEl,故选项D 正确. 【变式1】如图所示,有两根长为L 、质量为m 的细导体棒a 、b ,a 被水平放置在倾角为45°的光滑斜面上,b 被水平固定在与a 在同一水平面的另一位置,且a 、b 平行,它们之间的距离为x .当两细棒中均通以电流为I 的同向电流时,a 恰能在斜面上保持静止,则下列关于b 的电流在a 处产生的磁场的磁感应强度的说法正确的是( )A .方向竖直向上B .大小为2mg 2LIC .要使a 仍能保持静止,而减小b 在a 处的磁感应强度,可使b 上移D .若使b 下移,a 将不能保持静止【答案】ACD【解析】由安培定则可知b 的电流在a 处产生的磁场的磁感应强度方向应竖直向上,A 正确.a 的受力如图甲所示.tan 45°=F 安mg =BIL mg ,所以B =mg IL,B 错误.b 无论上移还是下移,b 在a 处的磁感应强度均减小,若上移,a 的受力如图乙所示.上移过程中F N 逐渐减小,F 安先减小后增大,两个力的合力等于mg ,可见b 适当上移,a 仍能保持静止,故C 正确.若使b 下移,导体棒中的安培力减小,根据受力平衡条件,当a 受的安培力方向顺时针转动时,只有变大才能保持平衡,故a 将不能保持静止,D 正确.【变式2】如图所示,一劲度系数为k 的轻质弹簧,下面挂有匝数为n 的矩形线框abcd ,bc 边长为l ,线框 的下半部分处在匀强磁场中,磁感应强度大小为B ,方向与线框平面垂直(在图中垂直于纸面向里),线框中 通以电流I ,方向如图所示,开始时线框处于平衡状态.令磁场反向,磁感应强度的大小仍为B ,线框达到 新的平衡,则在此过程中线框位移的大小Δx 及方向是( )A .Δx =2nBIl k ,方向向上B .Δx =2nBIl k,方向向下 C .Δx =nBIl k ,方向向上 D .Δx =nBIl k,方向向下 【答案】B【解析】线框在磁场中受重力、安培力、弹簧弹力处于平衡状态,安培力为F A =nBIl ,且开始时方向向上,改变电流方向后方向向下,大小不变.设在磁场反向之前弹簧的伸长为x ,则反向之后弹簧的伸长为(x +Δx ),由平衡条件知kx +nBIl =mg 及k (x +Δx )=nBIl +mg ,联立解得Δx =2nBIl k,且线框向下移动,B 对. 安培力作用下导体的加速问题【例5】.(2019·山西太原模拟)一金属条放置在相距为d 的两金属轨道上,如图所示.现让金属条以v 0的初速度从AA ′进入水平轨道,再由CC ′进入半径为r 的竖直圆轨道,金属条到达竖直圆轨道最高点的速度大小为v ,完成圆周运动后,再回到水平轨道上,整个轨道除圆轨道光滑外,其余均粗糙,运动过程中金属条始终与轨道垂直且接触良好.已知由外电路控制流过金属条的电流大小始终为I ,方向如图中所示,整个轨道处于水平向右的匀强磁场中,磁感应强度为B ,A 、C 间的距离为L ,金属条恰好能完成竖直面内的圆周运动.重力加速度为g ,则由题中信息可以求出( )A .金属条的质量B .金属条在磁场中运动时所受的安培力的大小和方向C .金属条运动到DD ′时的瞬时速度 D .金属条与水平粗糙轨道间的动摩擦因数【答案】ABD【解析】在圆轨道最高点,由牛顿第二定律,有BId +mg =m v 2r,所以选项A 正确;由题中信息可求出金属条在磁场中运动时所受的安培力的大小和方向,选项B 正确;由于不知道CD 间距,故不能求出金属条运动到DD ′时的瞬时速度,所以选项C 错误;由动能定理得-(mg +BId )·2r -μ(mg +BId )·L =12mv 2-12mv 02,所以选项D 正确. 【变式1】光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道向右由静止开始运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N【答案】D【解析】.金属细杆在水平方向受到安培力作用,安培力大小F 安=BIL =0.5×2×0.5 N =0.5 N ,金属细杆开始运动时的加速度大小为a =F 安m=10 m/s 2,选项A 错误;对金属细杆从M 点到P 点的运动过程,安培力做功W 安=F 安·(MN +OP )=1 J ,重力做功W G =-mg ·ON =-0.5 J ,由动能定理得W 安+W G =12mv 2,解得金属细杆运动到P 点时的速度大小为v =20 m/s ,选项B 错误;金属细杆运动到P 点时的向心加速度大小为a ′=v 2r=20 m/s 2,选项C 错误;在P 点金属细杆受到轨道水平向左的作用力F 和水平向右的安培力F 安,由牛顿第二定律得F -F 安=mv 2r,解得F =1.5 N ,每一条轨道对金属细杆的作用力大小为0.75 N ,由牛顿第三定律可知金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N ,选项D 正确.【变式2】如图所示,两平行导轨ab 、cd 竖直放置在匀强磁场中,匀强磁场方向竖直向上,将一根金属棒PQ 放在导轨上,使其水平且始终与导轨保持良好接触.现在金属棒PQ 中通以变化的电流I ,同时释放金属棒PQ 使其运动.已知电流I 随时间变化的关系为I =kt (k 为常数,k >0),金属棒PQ 与导轨间的动摩擦因数一定.以竖直向下为正方向,则下面关于金属棒PQ 的速度v 、加速度a 随时间变化的关系图象中,可能正确的是( )【答案】B 【解析】因为开始时金属棒PQ 加速度方向向下,与速度方向相同,做加速运动,加速度逐渐减小,即做加速度逐渐减小的变加速运动,然后加速度方向向上,加速度逐渐增大,做加速度逐渐增大的变减速运动,故A 错误,B 正确;根据牛顿第二定律得,金属棒PQ的加速度a=mg-F fm,F f=μF N=μF A=μBIL=μBLkt,联立解得加速度a=g-μBLktm,与时间成线性关系,故C错误;t=0时刻无电流,无安培力,只有重力,加速度竖直向下,为正值,故D错误.。