当前位置:文档之家› 第二章轴的拉伸与压缩10-16教案

第二章轴的拉伸与压缩10-16教案

教学年级:综合0901 姓名:周朝辉第二章:轴向拉伸与压缩本章重点: 1.1 拉伸与压缩的基本概念1.2 内力的求法1.3 轴向拉伸与压缩时材料的变形,虎克定律1.4 强度校核1.5 材料拉伸实验本章要求:掌握拉压杆的受力特点及变形特点。

运用力学知识求内力及校核强度,课时:10~16一、知识回顾:1、二力杆的概念及受力特点2、力的四个性质3、受力分析及作受力分析图。

二、新课新知:1、拉伸和压缩的概念拉伸和压缩受力特点是:作用在杆端的两外力(或外力的合力)大小相等,方向相反,作用线与杆的轴线重合。

变形特点:杆件沿轴线方向伸长或缩短。

2、轴向拉伸和压缩2.1内力和截面法1.内力:杆件在外力作用下产生变形,其内部的一部分对另一部分的作用称为内力。

2.轴力:拉压杆上的内力又称轴力。

3.截面法:将受外力作用的杆件假想地切开来用以显示内力,并以平衡条件来确定其合力的方法,称为截面法。

(1)截开沿欲求内力的截面,假想把杆件分成两部分。

(2)留下任意一段为研究对象(3)代替取其中一部分为研究对象,画出其受力图。

在截面上用内力代替移去部分对留下部分的作用。

(4)平衡列出平衡方程,确定未知的内力。

∑FX=0,得N-F=0 故N=F 2.2 内力和截面法4.轴力符号的规定:拉伸时N为正(N的指向背离截面);压缩时N为负(N的指向朝向截面)。

2.3拉伸和压缩时横截面上的正应力1.应力:构件在外力作用下,单位面积上的内力称为应力。

2.正应力:垂直于横截面上的应力,称为正应力。

用σ表示。

2.2轴向拉伸和压缩2.2.3拉伸和压缩时横截面上的正应力σ= N/A式中:σ——横截面上的正应力,单位MPa;N——横截面上的内力(轴力),单位N;A——横截面的面积,单位mm2。

σ的符号规定与轴力相同。

拉伸时,N为正,σ也为正,称为拉应力;压缩时N为负,σ也为负,称为压应力。

2.4轴向拉伸和压缩2.4.1 拉压变形和胡克定律(a)杆件受拉变形(b)杆件受压变形绝对变形:设等直杆的原长为L1,在轴向拉力(或压力)F的作用下,变形后的长度为L1,以△L来表示杆沿轴向的伸长(或缩短)量,则有△L= L1-L,△L称为杆件的绝对变形。

相对变形:绝对变形与杆的原长有关,为了消除杆件原长度的影响,采用单位原长度的变形量来度量杆件的变化程度,称为相对变形。

用ε表示, 则ε= △L/L=(L1-L)/L胡克定律:当杆内的轴力N不超过某一限度时, 杆的绝对变形△L与轴力N及杆长L成正比,与杆的横截面积A成反比.这一关系称为胡克定律, 即△L∝NL/A引进弹性模量E, 则有△L=NL/AE也可表达为:σ=E ε此式中胡克定律的又一表达形式,可以表述为:当应力不超过某一极限时,应力与应变成正比。

2.2.5拉伸(压缩)时材料的力学性质图1. 低碳钢拉伸变形σ—ε曲线图2. 灰铸铁拉伸变形σ—ε曲线1.低碳钢拉伸变形过程如图1所示低碳钢拉伸变形过程如图1.所示可分为四个阶段:①弹性阶段②屈服阶段③强化阶段④颈缩阶段比例极限:应力与应变成正比的最高限。

符号σp 弹性极限:产生弹性变形的最大应力极限。

符号σe 屈服极限:符号σs 低碳钢σs 为240MPa 强度极限:符号σb 低碳钢σb 为400MPa冷作硬化:将材料预拉到强化阶段,使之出现塑性变形后卸载,再重新加载,材料的比例极限提高而塑性应变减小的现象。

塑性材料:破坏时产生显著变形的材料 脆性材料:破坏时产生不显著变形的材料材料的塑性变形延伸率为: 材料的断面收缩率为:应力集中:由于杆件外形的突然变化而引起的局部应力急剧增大的现象。

三、新知运用:8-1 试求图示各杆的轴力,并指出轴力的最大值。

解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F =(b)(a)(c) (d)N 1(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F =(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;F RFN 1F RF N 21 1F N1N 2F N 3330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN =(d)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的右段;110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =8-2 试画出8-1所示各杆的轴力图。

解:(a)(b)(c)F N1F N 2FFFF(d)8-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 kN 与F 2作用,AB 与BC 段的直径分别为d 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。

解:(1) 用截面法求出1-1、2-2截面的轴力;11212 N N F F F F F ==+(2) 求1-1、2-2截面的正应力,利用正应力相同;311215010159.210.024N F MPa A σπ⨯===⨯⨯32221225010159.210.034N F F MPa A σσπ⨯+====⨯⨯262.5F kN ∴=8-6 题8-5图所示圆截面杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。

解:(1) 用截面法求出1-1、2-2截面的轴力;11212 N N F F F F F ==+(2) 求1-1、2-2截面的正应力,利用正应力相同;3112120010159.210.044N F MPa A σπ⨯===⨯⨯3221222(200100)10159.214N F MPa A d σσπ+⨯====⨯⨯249.0 d mm ∴=F1kN8-14 图示桁架,杆1与杆2的横截面均为圆形,直径分别为d 1=30 mm 与d 2=20 mm ,两杆材料相同,许用应力[σ]=160 MPa 。

该桁架在节点A 处承受铅直方向的载荷F =80 kN 作用,试校核桁架的强度。

解:(1) 对节点A 受力分析,求出AB 和AC 两杆所受的力;(2) 列平衡方程00000 sin 30sin 4500 cos30cos 450x AB ACyAB AC F F F FF F F =-+==+-=∑∑解得:41.4 58.6AC AB F F kN F kN ==== (2) 分别对两杆进行强度计算;[][]1282.9131.8ABAB ACAC F MPa A F MPa A σσσσ====所以桁架的强度足够。

8-15 图示桁架,杆1为圆截面钢杆,杆2为方截面木杆,在节点A 处承受铅直方向的载荷F 作用,试确定钢杆的直径d 与木杆截面的边宽b 。

已知载荷F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。

FAB F解:(1) 对节点A 受力分析,求出AB 和AC 两杆所受的力;70.7 50AC AB F kN F F kN ====(2) 运用强度条件,分别对两杆进行强度计算;[][]3213225010160 20.01470.71010 84.1AB ABS AC ACW F MPa d mmA d F MPa b mm A b σσπσσ⨯==≤=≥⨯==≤=≥所以可以确定钢杆的直径为20 mm ,木杆的边宽为84 mm 。

8-18 图示阶梯形杆AC ,F =10 kN ,l 1= l 2=400 mm ,A 1=2A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形△l 。

解:(1) 用截面法求AB 、BC 段的轴力;12 N N F F F F ==-(2) 分段计算个杆的轴向变形;33112212331210104001010400200101002001050 02 N N F l F l l l l EA EA .mm⨯⨯⨯⨯∆=∆+∆=+=-⨯⨯⨯⨯=-AC 杆缩短。

FF AB F ACFA CB8-26 图示两端固定等截面直杆,横截面的面积为A ,承受轴向载荷F 作用,试计算杆内横截面上的最大拉应力与最大压应力。

解:(1) 对直杆进行受力分析;列平衡方程:0 0xA B FF F F F =-+-=∑(2) 用截面法求出AB 、BC 、CD 段的轴力;123 N A N A N B F F F F F F F =-=-+=-(3) 用变形协调条件,列出补充方程;0AB BC CD l l l ∆+∆+∆=代入胡克定律;231 /3()/3/3 0N BC N CDN ABAB BC CD A A B F l F l F l l l l EA EA EAF l F F l F l EA EA EA∆=∆=∆=-+-+-=求出约束反力:/3A B F F F ==(4) 最大拉应力和最大压应力; 21,max ,max 2 33N N l y F F F FA A A Aσσ====-(b)。

相关主题