凝聚态物理简介
二、团簇基本知识简介
团簇是由几个乃至数千个原子或分子(国际上多数 定义含原子数在10一1000范围)通过一定的物理或化学 结合力组成的相对稳定的微观或亚微观聚集体。
团簇的性质既不同于单个原子和分子,也不同 于固体或液体,而且不能用两者性质作简单的线性 外延或内插得到。因此人们把团簇看做是介于原子, 分子与宏观固体之间物质结构的新层次或新凝聚态, 即介观层次,是各种物质由原子,分子向体相物质 转变的中间过渡态,或者说代表了凝聚态物质的初 始态。
Hale Waihona Puke 4)研究特殊团簇材料(如片状、线状、管状、团状、 空心球状、零维、一维、二维、三维结构) 的合成和 性质;5)发展新的方法对团簇表面进行修饰和控制; 6)团簇与表面的相互作用,主要研究团簇在表面的 扩散、吸附、沉积等动力学行为;7)富勒烯和纳米 管内掺杂的结构与性质的研究,这与团簇的潜在应 用直接关联;8)探索新的理论,不仅能解释现有团 簇的效应和现象,而且能解释和预知团簇的结构, 模拟团簇动力学性质,指导实验。
团簇研究的基本问题是弄清团簇如何由原子、 分子一步步发展而成,以及随着这种发展,团簇的结 构和性质如何变化,当尺寸多大时,发展成为宏观物 体 。尽管团簇结构对其独特的性质起着关键作用, 但决定团簇结构是非常困难的,仍没有能够确定自由 团簇几何构型的直接的实验方法。因为纳米团簇使用 衍射技术探测显得太小,而用光谱技术探测又显得过 大,从而该尺度的团簇结构只能用间接的实验方法或 理论计算决定。
可以预见,随着团簇研究的深入发展,新现象 和新规律不断揭示,必然出现更加广阔的应用前景。 通过几十年对团簇的研究,人们对团簇已经有了基 本的认识,积累了大量的实验和理论知识。但是, 由于团簇自身的多样性和复杂性,团簇还有许多值 研究探索的内容,团簇研究正不断取得新的进展 。
2 .团簇物理学研究内容 团簇物理学是研究团簇的原子组态、电子结构、 物理和化学性质向大块物质演变过程中呈现出来的特 征和规律 。首先,团簇的基态构型一直扮演着很重 要的角色。团簇正确基态结构的寻找一直是团簇研究 的基础,一般对团簇相关性质的研究一直建立在理论 方面正确预测的几何结构的基础之上。
密度泛函理论描述所有基态性质都是电荷密度 的 函数,由Hohenberg-Kohn定理,根据薛定愕方程,能 量的泛函包括三部分:动能、外势场的作用及电子间 的相互作用。这里所处理的基态是非简并的,不计自 旋的全同费米子(这里指电子)系统的哈密顿量为: H=T+U+V (4) 其中T为动能项;U为库仑排斥项;为对所有粒子 都相同的局域势,V表示外场的影响。
2. 凝聚态物理的特点 凝聚态物理的特点是:最富有创新性,研究内容 极其广泛;基础研究与应用研究的界限越来越难以划 分;研究前沿发展很快,此起彼伏,它将更使人感到 眼花缭乱。它的发展的大趋势是将不断地开拓出新的 领域,制备出新的材料、发现令人意想不到的新现象。 在物理学和化学以及生物学和化学以及生物学的结合 和交叉方面,毫无疑问,凝聚态物理将起到先导的作 用。
0 n n n
r , R E r , R
此处n是电子态量子数,原子核坐标的瞬时位置R 在电子波函数中仅作为参数出现。
2.绝热近似 绝热近似又称玻恩-奥本海默近似(Born-Oppenheimer approximation),在热力学统计物理、固体物理中,讨 论晶格布里渊区时假定晶格中的原子在平衡位置静止 不动。实际上晶体中的原子进行着热振动。这对电子 的运动将产生一定的影响。但原子核的质量比电子的 质量要大得多,其运动比电子慢得多。因此,可近似 认为,某一时刻电子的运动状态只由该时刻原子核在 晶体中的位置决定,电子状态的能量是晶格位矢的函 数,称为绝热近似。通过绝热近似,可以把电子的运 动与原子核的运动分开,得到多电子薛定谔方程:
鉴于国际上团簇研究仍处于发展初期,这个领 域还有待于我们去积极而严谨的探索:一方面向小 尺寸发展,深入到团簇内部原子和电子的结构和性 质,弄清物质由单个原子、分子向大块材料过渡的 基本规律和转变关节点;另一方面向大尺度发展, 研究由团簇构成各种材料包括超激粒子的结构和性 质,同时促进团簇基础研究成果向应用方面转化。
3 .团簇的性质与分类 作为尺寸介于宏观与微观的新型体系,团簇具有 许多独特的性质。这些特性,最主要的是来自于团簇 体系的两个典型效应-尺寸效应和表面效应。根据团簇 中原子键结合的类型和强度,大致可以将团簇分为六 种:范德瓦尔斯团簇、分子团簇、氢键团簇、离子键 团簇、共价键团簇、和金属键团簇。根据团簇所组成 的电子结构,即其在周期表中的位臵对团簇加以分类, 可以分为:简单金属团簇,过渡金属团簇,半导体族 团簇,五、六族元素原子团簇,惰性气体团簇和贵金 属团簇。
凝聚态物理简介
目
录
一、凝聚态物理简介
二、团簇基本知识简介 三、 密度泛函理论简介 四、计算软件DMOL简介
五、目标
一、凝聚态物理简介
1.凝聚态物理 凝聚态物质是固体和液体的总称。凝聚态物理是 从量子力学观点来描述固体、液体内部微观粒子的运 动规律的科学。 所研究的对象可以是金属、半导体、 超导体、超 液体、准晶体、电介质、 磁性物质等等,是物理学中 内容最丰富, 应用最广泛的一门分支学科,也是当今 物理学最活跃的领域。 凝聚态物理在本世纪取得了巨 大的成功,发展迅速。
其次,团簇物理学中的另一个关键的问题是电子结构。 随着团簇中原子数目增多,团簇的分立能级结合成能 带,出现满带和未满带及两者间的能隙,这种电子结 构的转变是团簇研究中的基本问题。最后,由于不同 种元素所构成的不同类团簇将表现出不同的性质,研 究它们对认识大块凝聚物质的某些性质和规律也很有 帮助。比如,对稳定性的研究可以深入理解团簇的几 何幻数和电子壳层结构的关系;对过渡金属磁性的研 究,可以深入理解团簇磁性的成因以及块体磁性;对 于金属团簇光吸收谱的研究,可以考察团簇从非金属金属性质的转变。
T U 1
drv ( r ) ( r ) T ( ) 2 drd r
在能源研究方面,可用于制造高效燃烧催化剂 和烧结剂。用纳米尺寸的团簇原位压制成纳米结构 材料,具有很大的界面成分以及高扩散系数和韧性 超塑性,展示了优异的热学、力学和磁学特性,并 可制造新型合金。
团簇构成的半导体纳米材料由于在薄膜晶体管、气体 传感器、光电器件等应用领域的重要性而日益受到重 视。团簇具有极大的表体比,催化活性好,广泛应用 于化工工业领域。而在微电子学和光电子学方面,新 一代微电子器件的发展也依赖于团簇性质和应用研究, 因为从微米和亚微米尺度向纳米范围的深入是器件发 展的趋势。团簇点阵构成的微电子存贮器正在设计之 中,团簇构成的“超原子”具有很好的时间特性,是 未来“量子计算机”较理想的功能单元。
纳米团簇一直是材料科学研究领域的热门课题, 也是纳米材料的基本研究单元。团簇的微观结构特 点和奇异的物理化学性质为制造和发展特殊性能的 新材料开辟另一条途径。例如,团簇红外吸收系数、 电导特性和磁化率的异常变化,某些团簇超导临界 温度的提高,可用于研制新的敏感元件、贮氢材料、 磁性液体、高密度磁记录介质、微波及光吸收材料、 超低温和超导材料、铁流体和高级合金。
3.凝聚态物理前沿领域 凝聚态物理的前沿领域中主要包括:超导电性物 理、晶体学(新型功能晶体和晶体结构分析)、磁 学、表面物理(表面和界面物理及材料)、固态发 光物理、液态物理、生命科学中的物理问题、极端 条件下物理等研究领域。其中,低维(二维、一维 和零维体系)凝聚态物理:人工超结构中的物理问 题、纳米材料和纳米体系物理、低维半导体量子系 统和介观系统物理、低维系统的磁性等,反应了体 系中受限电子态和相干电子态的性质,它具有与三 维体系不同的行为。
三、 密度泛函理论简介
量子力学第一性原理(First-Principles)计算方法 有着半经验方法不可比拟的优势,它只需要知道构 成微观体系各元素的原子序数,而不需要任何其它 的可调(经验和拟合)参数,就可以应用量子力学来计 算出该微观体系的总能量、电子结构等物理性质。 因此非常适于解决固体物理、材料科学等领域中的 问题。近年来,第一性原理计算,特别是基于密度 泛函理论的第一性原理计算同分子动力学相结合, 在材料设计、合成、模拟计算和评价诸多方面有许 多突破性的进展,已经成为计算材料科学的重要基 础和核心技术 。
i
2 i
V r 2
i i i ,i
1
H i ri ri i 1
i ,i
H ii E
(3)
3. Hohenberg-Kohn定理 密度泛函理论的基础建立在两个著名的定理之 上。这两个定理是1964年Hohenberg和Kohn在巴黎 研究非均匀电子气的理论基础时提出来的. Hohenberg-Kohn: 定理一:体系的基态能量仅仅是电子密度的泛函 。 定理二:以基态电子密度为变量,将体系能量最 小化之后就得到基态能量。
1.团簇研究的意义 团簇科学是一门新的交叉学科,原子团簇不仅跨 越合成化学、化学动力学、晶体化学、结构化学、原 子簇化学等化学分支,还跨越原子、分子物理、表面 物理、晶体生长、非晶态等物理学分支。团簇科学不 仅在高化学活性、催化、表面,超导等方面有着广泛 的前景,而且还是纳米材料、超细微粒、超晶格等高 技术的科学基础。对团簇的研究有助于人们深入理解 纳米材料的各种奇异性质,是开发高密度存储、微电 子、光电子通讯、和高效催化等高新技术材料的基础 。
研究方向:1)研究团簇的组成及电子构型的规律、 幻数、几何结构、稳定性的规律;2)研究团簇的成 核和形成过程及机制,研究团簇的制备方法、尤其是 获取尺寸均一与可控的团簇束流;3)研究金属、半 导体及非金属和各种化合物团簇的光、电、磁、力学、 化学等性质,它们与结构和尺寸的关系,及向大块物 质转变的关节点;
特别是,当电子波函数的相干波长与体系的特征 波长可比时更表现出全新的物理效应和规律。这是凝 聚态物理的重要发展前沿之一。凝聚态物理的另一重 要发展前沿是以发现新的有序相和有序相的不对称破 缺以及这些新相所具有的新的物理性能为主要目标的 研究:高温超导电性和超导物理研究、新功能晶体材 料的探索和材料设计专家系统的研究、稀土—过渡族 化合物磁性、表面物理(原子水平的界面生长,界面 反应及界成材料)等是主要的研究内容,这也是凝聚 态物理中最具有活力的领域。