当前位置:文档之家› 锁相环(PLL)基本原理

锁相环(PLL)基本原理


压控振荡器的输出信号为:
第 19 页
在一般情况下,ωi 不一定等于ωo ,所以为了便于比较两者 之间的相位差,现都以ωo t 为参考相位。这样 ui(t) 的瞬时相位 为:
it i (t ) ot i o t i (t )
ot i (t )
其中:
第六节 锁相环路的应用
一、集成锁相环芯片 二、 方波发生器 三、PLL在调制解调技术中的应用 四、PLL在空间技术上的应用 五、PLL在稳频技术中的应用 六、PLL在频率合成器中的应用
第 3 页
第一节 锁相环路(PLL)及其反馈控制电路简介
在无线电技术中,为了改善电子设备的性能,广泛采用各种 的反馈控制电路。常用的有自动相位控制(APC)电路,也称为锁 相环路(PLL-Phase Locked Loop),自动增益控(AGC)电路以 及自动频率控制(AFC)电路。
第 27 页
3.压控振荡器VOC
压控振荡器受环路滤波器输出电压uc(t) 的控制,使振荡频 率向输入信号的频率靠拢,直至两者的频率相同,使得VCO输 出信号的相位和输入信号的的相位保持某种关系,达到相位锁定 的目的。
压控振荡器: 指输出频率与输入控制电压有对应关系的振荡电路(VCO),频率是 式中C0是零反向偏压时 输入信号电压的函数的振荡器VCO,振荡器的工作状态或振荡回 变容二极管的电容量;φ 路的元件参数受输入控制电压的控制,就可构成一个压控振荡器 是变容二极管的结电压; γ 是结电容变化指数。
三、锁相环的基本原理
第 5 页
AGC电路接收方框图如图2-1所示。
图2-1 AGC电路的接收方框图
第 6 页
工作原理: 它的工作过程是输入信号 经放大、变频、再放大后,到 中频输出信号,然后把此输出电压经检波和滤波,产生控制电压 , 反馈回到中频、高频放大器,对他们的增益进行控制。所以这种增 益的自动调整主要由两步来完成:第一,产生一个随输入 信号而变 化的直流控制电压 (叫AGC电压);第二,利用AGC电压去控制某些 部件的增益, 使接收机的总增益按照一定规律而变化。
uo (t ) U 2 m cos0t o (t ) U 2 m cos0t o (t )
式中 o (t ) o (t ) ,经乘法器相乘后,其输出为
1 ui (t ) uo (t ) Am AmU1mU 2 m sin 2o t i (t ) o (t ) sin i (t ) o (t ) 2
环路滤波器的作用是滤除ud(t)中的高频分 量及噪声,以保证环路所要求的性能。 环路 滤波器 压控
输出信号
鉴相器是相位比较装置,用来比较输入 信号ui(t)与压控振荡器输出信号uo(t) 的 相位,它的输出电压ud(t)是对应于这两 个信号相位差的函数。 参考信号
鉴相器
振荡器
压控振荡器受环路滤波器输出电压uc(t)的控制,使振 荡频率向输入信号的频率靠拢,直至两者的频率相同, 使得VCO输出信号的相位和输入信号的相位保持某种 特定的关系,达到相位锁定的目的。
第 17 页
设输入信号ui(t)和本振信号(VCO输出信号)uo(t)分别是正弦和 余弦信号,它们在鉴相器内进行比较,鉴相器的输出是一个与两者 间的相位差成比例的电压ud(t),一般把ud(t)称为误差电压。 环路低通滤波器滤除鉴相器中的高频分量,然后把输出电压ud(t) 加到VCO的输入端,VCO送出的本振信号频率随着输入电压的变化而 变化。如果二者频率不一致,则鉴相器的输出将产生低频变化分量 并通过低通滤波器使VCO的频率发生变化。只要环路设计恰当,则这 种变化将使本振信号的频率一致起来。 最后如果本振信号的频率和输入信号的频率完全一致,两者的 相位差将保持某一恒定值,则鉴相器的输出将是一个恒定直流电压 (高频分量忽略),环路低通滤波器的输出也是一个直流电压,VCO 的频率将停止变化,这时,环路处于“锁定状态”。
所以,当φ(t)≤30°时,鉴相器特性近似为直线,ud(t)与φ(t)成 正比。
第 24 页
在时域中鉴相器数学模型如图4-4所示
图4-4 鉴相器的线性数学化模型(时域)
第 25 页
2.环路滤波器(Loop Filter,简称LF)
环路滤波器是线性电路,由线性元件电阻、电感和电容组成, 有时还包括运算放大器在内。它是低通滤波器。在锁相环路中, 常用的滤波器有以下的三种,如图4-5所示。
高频成分
低频成分
第 21 页
通过环路滤波器,把上式中高频分量滤除。则鉴相器的输出为
u d (t ) 1 AmU 1mU 2 m sin i (t ) o (t ) 2
ud (t ) K d sin (t )
式中 K d
1 AmU 1mU 2 m 2
其中Am 为乘法器的增益系数,量纲为1/V。
第 13 页
第四节
锁相环路(PLL)
一、PLL概述
锁相环路是一个相位误差控制系统,是将参考信号与输出信号 之间的相位进行比较,产生相位误差电压来调整输出信号的相位, 以达到与参考信号同频的目的。
环路 滤波器 压控
振荡器 输出信 号
参考信 号
鉴相器
图4-1 锁相环系统框图
第 14 页
锁相接收机 微波锁相振荡源
图4-2 基本锁相环框图
第 16 页
鉴相器是相位比较装置,用来比较输入信号ui(t)与压控振荡 器输出信号uo(t) 的相位,它的输出电压ud(t)是对应于这两个信号 相位差的函数。
环路滤波器的作用是滤除ud(t)中的高频分量及噪声,以保 证环路所要求的性能。
压控振荡器受环路滤波器输出电压uc(t)的控制,使振荡 频率向输入信号的频率靠拢,直至两者的频率相同,使得VCO 输出信号的相位和输入信号的相位保持某种特定的关系,达 到相位锁定的目的。
i (t ) i o t i (t ) t i (t )
i o 是输入信号角频率与VCO振荡器信号角频率之差, 称之为固有频差。
第 20 页
按上面的新定义,可将式PLL输入、输出信号改写为
ui (t ) U1m sino t i (t )
锁相环路应用
锁相调频器
锁相鉴频器
定时提取(滤波) 锁相频率合成器 ……
在锁相频率合成器中,锁相环路具有稳频作用,能够完成频 率的加、减、乘、除等运算,可以作为频率的加减器、倍频器、 分频器等使用。
二、基本锁相环的构成
基本的锁相环路组成
第 15 页
鉴相器(PD-Phase Detector) 环路滤波器(LF-Loop Filter) 压控振荡器(VOC: Voltage Controlled Oscillater)
第 9 页 Ui与增益K的关系曲线 Ui与增益K的关系曲线
Ui与UO的关系曲线
加上AGC后,放大 器增益K随Ui的增加而减 小(曲线1),因而输出电 压UO 和输入电压Ui不再 是线性关系,振幅特性 UO~ Ui不再是一条直线, 而是如 图2-3 所示的曲 线2’。
图2-3 简单的AGC特性
从曲线可知:当Ui 较小时,控制电压Up 也较小, 这时增益可K虽略有减小,但变化 不大,因此振幅曲线基本上仍是一段直线;当 足够大时,Up的控制作用较强,增益K 显著减小。这时UO基本保持不变,振幅特性曲线2‘的bc段所示。通常把UO基本上保持 不变这部分叫做AGC的可控范围。可控范围越大,AGC的特性越好。
第 18 页
四、锁相环各组成部分分析
1.鉴相器 鉴相器是锁相环路的关键部件,它的形式很多,我们仅介绍其 中常用的“正弦波鉴相器”。 1)正弦波鉴相器的数学模型 任何一个理想模拟乘法器都可以作为有正弦特性的鉴相 器。设输入信号为:
ui (t ) U1m sini t i (t )
uo (t ) U 2m coso t o (t )
第 11 页
•自动频率控制(AFC)的原理框图
图3-1 AFC的原理方框图
第 12 页
工作原理: 图3-1是AFC的原理框图。被稳定的振荡器频率f0 与标准 频率fr 在频率比较器中进行比较。当f0 = fr时,频率比较器无输出, 控制元件不受影响;当 f0 ≠ fr时,频率比较器有误差电压输出,该电 压大小与| f0 - fr | 成正比。此时,控制元件的参数即受到控制而发生 变化,从而使 发生变化,直到使频率误差 减小到某一定值Δ f ,自 动频率微调过程停止,被稳定的振荡器就稳定在 f0 = f0± Δf 的频率 上。 AFC电路是以消除频率误差为目的的反馈控制电路,由于它的基本 原理利用频率误差电压去消除频率误差,这样,当电路达到平衡时,必然 有剩余的频率误差存在,无法达到现代通信中对高精度频率同步(频差 为0)和相位跟踪的广泛要求.要实现频率和相位的跟踪,必须采用自动 相位控制电路,即锁相环(PLL: Prase Locked Loop)
产生控制信号的简单的AGC电路如图1-2所示。
第 7 页
图2-2 简单的AGC电路
第 8 页
工作原理: 图2-2是简单AGC电路, 这是一种常用的电路。 是中 频放大管,中频输出信号经检波后,除了得到音频信号外,还 有一个平均分量(直流) ,它的大小和中频输出载波幅度成正 比,经滤波器 ,把检波后的音频分量滤掉,使控制电压 不受音 频电压的影响,然后把此电压(AGC控制电压)加到 的基极, 对放大器进行增益控制。
第 23 页
2)鉴相器线性化的数学模型
当 i (t ) o (t ) 30o 时,
sin i (t ) o (t ) i (t ) o (t )
因此可以把式
u d (t ) K d sin (t ) 写成
ud (t ) K d i (t ) o (t ) K d (t )
它们所起的作用不同,电路构成也不同,但它们同属于反馈 控制系统,其基本工作原理和分析方法是类似的。
相关主题