当前位置:文档之家› 水库大坝安全评价技术现状与发展

水库大坝安全评价技术现状与发展

水库大坝安全评价技术现状与发展袁坤傅蜀燕欧正峰王之博摘要:随着水资源开发与利用的发展,以及极端气候的变化,大坝安全性问题日益突显,大坝安全性评价技术就显得尤为重要。

主要从国内外水库大坝安全监测和风险分析的研究现状,分析水库大坝安全评价存在的问题,及对未来水库大坝安全评价发展指定方向。

关键词:大坝;安全评价;安全监测;风险分析中图分类号: TV64 文献标识码: A 文章编号: 1001-9235( 2013) 06-0063-05中国水库大多建于20 世纪50—70 年代,由于当时的经济社会条件制约,普遍存在工程质量问题,加上长期维修管理不够,其中约50%左右水库为病险水库。

病险水库不仅不能正常发挥效益,而且存在较高的溃坝风险,严重威胁人们安全与社会的可持续发展。

因此,要定期对水库大坝进行安全评价,了解大坝安全状况,以便有针对性地采取措施,对确保大坝安全和公共安全具有十分重要的意义。

水库大坝安全评价就是利用系统工程原理和方法,对拟建或已有水库大坝工程及系统可能存在的危险性及其可能产生的后果进行综合评价和预测,并根据可能导致的事故风险的大小,提出相应的安全对策措施,以达到工程及系统安全的过程。

主要从大坝安全监测和风险分析两个测度来分析大坝的安全评价。

1 水库大坝安全评价技术发展现状1.1 国外水库大坝安全评价技术的发展早在19 世纪末期,人们就开始关注大坝安全,由于当时科学技术不发达,人们只对大坝进行感性的分析。

到20 世纪初—中期,随着水利行业的发展,大坝的工程技术得到较快的发展,大坝数量迅速增加,失事事故也逐渐增多,大坝的安全性引起国际大坝委员会的高度重视。

1948 年第3 届国际大坝会议安排了防止管涌的最新措施会议,以提高对大坝的安全性认识; 1951 年第4 届大会提出了从大坝和库岸角度看大坝安全性的议题; 1970 年第10 届大会安排了大坝和建筑物监测的议题; 1979 年第13 届大会提出了大坝老化和失事的议题; 1982年第14 届大会安排了运行中大坝安全的议题; 2002 年第70 届年会提出了大坝安全与风险评价的议题;2003 年第71 届年会安排了水库大坝抗震安全评价影响研究的议题; 2005 年国际大坝委员会第73 届年会安排了大坝工程的不确定性评估的议题; 2006 年国际大坝委员会第22 届大坝会议提出了土坝和堆石坝的大坝安全、洪水和干旱的评估及管理等议题; 2012 年国际大坝委员会第80 届年会成立了大坝安全、大坝监测等专委会。

同时世界各国也以此为契机,着重研究水库大坝的安全评价,并从风险分析和大坝安全监测两个方面来对大坝进行安全性评价。

a) 监测技术的发展现状。

国外大坝安全监控资料分析工作起步较早,在20 世纪50 年代以前,人们主要通过感观认识来观测大坝表面,并对变形观测值作定性分析。

1955年,意大利的Faneli 和葡萄牙的Rocha 等首次应用统计回归方法定量分析了大坝的变形观测资料。

Rocha 等人采用大坝横断面各层平均温度和温度梯度作为温度因子,并以函数式来表示水位因子,使模型表达式进一步完善。

1963 年中村庆一等采用回归分析法分析大坝实测资料,并筛选出显著因子,以建立最优的回归方程。

1980 年Bonaldi 等提出了混凝土大坝变形的确定性模型和混合模型,将运用有限元理论计算值与实测数据有机地结合起来。

1985 年Ouedes 应用多元线性回归( 高斯-马尔柯夫概率函数模型) 来拟合原因量与效应量的关系,这种方法能分离各个分量,并且能确定原因量和效应量的最佳经验公式。

1996 年Lue E.chouinard 等采用主成份回归分析了dukki 拱坝的监测资料,这种回归分析方法能分离各个分量,并且能确定原因量和效应量的最佳经验公式[5]。

其他许多学者在大坝安全监控数学模型上也做了一些研究,为回归方法的的完善作出了贡献。

学者在资料分析中提出采用MDV 方法对大坝进行监控,即: 从测值序列中将水压分量和温度分量分离出来,分析时效和残差的变化规律来评判大坝的安全状况。

目前,葡萄牙、法国、意大利、西班牙和奥地利等国家在大坝安全监测以及相关的各项研究方面不同程度地处于国际领先水平。

到21 世纪初,国际大坝委员会第118 号公报《大坝自动化监测系统———导则和实例》中,总结了自动化监测资料分析方面的经验,可以看出人工智能技术是目前的发展趋势。

b) 风险分析技术的发展现状。

风险分析是近几十年来逐步发展起来的一门综合性边缘科学。

其最早起源于美国,应用在工业、军事等方面。

1974 年美国发表的商用核电站风险评价报告[8],引起了全世界极大关注,标志着风险分析技术推广应用的开始,从此风险分析技术在各个领域的研究逐渐开展起来。

对水利工程的风险分析最早也起源于美国。

早在20 世纪70 年代,美国土木工程师协会( ASCE) 在评估已建大坝溢洪道泄洪能力时,就应用了风险分析方法来分析溢洪道的大小规模[9]。

随着一些重要研究成果的发表,以及美国等一些国家若干大坝失事造成灾难性后果的披露,美国工程界逐渐重视了对大坝的安全评估。

1978 年美国总统卡特在对全美水利资源委员会的工作中,指出了系统风险分析在水利工程中应用的必要性及重要性。

1988 年ASCE 发表的“大坝水文安全评估程序”报告也将风险分析作为主要评估方法。

20 世纪80 年代,美国学者Richard B.Waite、DavidS.Bowels 等运用风险评价方法为美国西部几个大坝业主进行了大坝风险评价[10]。

20 世纪90 年代初,BC Hydro 和澳大利亚大坝委员会根据在其他领域积累的实践经验,制定了暂行的生命损失可接受风险标准。

当前大坝风险分析技术在国外发展迅速,尤其是美国、加拿大、澳大利亚及西欧等。

1994 年澳大利亚大坝委员会颁布的《风险评估指南》,后又进行修订; 于1998 年制定了《大坝地震设计指南》和《大坝环境管理指南》; 1999 年制定了《大坝可接受防洪能力选择指南》; 2000 年5 月制定了《大坝溃决后果评价指南》;2002 年2 月制定了昆士兰州政府自然资源和矿产部《大坝溃决影响评价指南》和《昆士兰州大坝安全管理指南》等。

在风险标准方面,加拿大BC Hydro 制定了一个临时的风险标准[3]。

风险分析技术上,美国国家气象局( NWS) 开发了一系列的溃坝模型,有DAMB RK 模型、BREACH 模型以及FLDWAV 模型,为溃坝洪水计算提供了强大的计算支持。

芬兰环境研究院和芬兰农林部、内务部及西部地区环境中心于1999 年06月01日至2001年03 月31 日联合开发的RESCDAM 计划中提出了一套风险分析方法,应用数字地形模型( DTM) 对溃坝洪水进行一维和二维模拟,研究了流动水流中人群的稳定性和机动性、房屋的性能及森林和房屋的糙率。

应用方面,从单坝风险评估、群坝风险评估[18]到对大坝安全隐患除险加固的排序[11],都得到了实际应用。

此后,欧洲有国家成立了专门从事水利工程可靠性和风险分析的工作小组,提出了风险分析的研究框架和系统的理论、方法及评价指标等。

近年来,加拿大、澳大利亚等国在大坝安全评估和决策方面,开展了诸多研究工作,提出了一系列大坝安全分析的理论和方法,建议采用概率的允许风险作为大坝安全的标准; 荷兰等国在防洪风险分析和堤防设计标准方面,也进行了诸多研究工作,取得了不错的进展; 国际上普遍认同将洪水风险图的绘制作为洪灾风险评估的重点工作,并开展了相关研究工作。

2000 年在北京召开的第20 届国际大坝会议上,第76 议题“风险分析在大坝安全决策和管理中的应用”主要讨论了风险和灾害定义,风险估计方法、评估技术及风险管理和应急预案等,标志着风险分析已发展成为体系完整的决策工具。

2005 年国际大坝委员会发布了130 号公报《大坝安全管理中的风险评估》,公报主要介绍了风险评估的原理和术语,简述了风险评估在大坝安全决策中的应用,标志着风险概念已被世界水利界所接受。

2010 年国际大坝委员会发布了最新的关于大坝安全管理的公报草案,系统地介绍了大坝安全管理的方针目标、计划、实施、性能监控和评价以及审核校核等的方法步骤,并对以往发布的公告进行对比分析。

c) 存在的问题。

综合分析国外的水库大坝安全评价技术中的监测与风险分析技术的发展现状,存在的主要问题有: ①随着区域经济的发展及对水资源管理的需求,人类社会与水库大坝越来越靠近,人们在享受水库大坝带来的经济效益的同时,也承担着潜在大坝失事所带来的巨大风险,使得传统的以大坝工程安全为主的评价标准已不再适用。

②水库大坝与周围自然环境和社会环境组成了一个相互影响相互制约的复杂灾变系统,大坝作为该系统的中心,既是承灾体,又是孕灾环境,必须将其放入到整个复杂灾变系统中研究其安全性,建立起基于风险理念的大坝安全评估体系。

③风险识别作为大坝风险分析的第一环节,能否识别出所有潜在的失效模式及路径,正确合理地约简失事模式及路径集,挖掘出大坝的主要失事模式及路径,直接影响到风险分析结果的正误和分析过程的易繁。

④由于大坝安全监测的测点比较分散,且仪器种类较多,要实现对建筑物各测点的全面控制,需要一种低成本、可互操作的测控系统。

⑤国外对大坝安全监测技术重点是研究监测仪器、设备的更新等,不注重对大坝安全理论专业知识的培养,特别是将监测技术、控制、数据分析管理、安全分析评价、快速预报预警和野外设备仪器综合防护等为一体的系统化研究成果尚不成熟。

1.2 国内对大坝安全评价技术的发展我国目前是世界上水库大坝最多的国家,大、中型大坝约占4%左右,15 m以上的大坝约占20%,大部分大坝修建于20 世纪50—70 年代,随着大坝建设的快速增多,大坝的安全性问题越来越突出,引起了我国政府的高度重视,大坝的安全评价技术也得到了迅速发展。

a) 监测技术的发展现状。

早在20 世纪50 年代,我国就开始对大坝进行观测来分析大坝安全; 如对官厅水库、南湾水库进行水平位移、沉降等指标进行观测,对丰满水库进行温度及应力应变指标的观测[12]; 20 世纪50 年代末期,对三门峡等大型混凝土大坝系统地开展了较大规模的内、外部观测[13]。

1974 年,陈久宇等学者开始应用统计回归方法来分析大坝安全监测资料,并提出了许多对大坝安全分析有价值的模型。

到20 世纪80 年代后期,我国观测技术总体水平有了很大提高,实现了自动化遥感观测。

如我国从1987 年开始连续3 年开展了大坝安全评价中防汛遥感观测技术研究,1987 在永定河下游进行的防汛遥感实验中,首次在我国实现了机载真实孔径侧视雷达图像的实时传输。

我国在“六五”至“八五”期间,国家通过“遥感技术应用研究”科技攻关项目在建立中国洪水灾害监测信息系统方面取得了丰硕的成果[14]。

相关主题