雷达散射截面
10
目标
(m2 )1减缩10dB 1,2各减缩10dB 消除1
1
100
10
10
0
2
100 100
10
100
同相叠加(m2) 400 173.2
40
100
减缩量
0
3.6
10
6
反相叠加(m2) 0
46.7
0
100
减缩量
0
0
独立散射源的相位相加可能产生复杂的散射图
σ的频率特性
同一目标对于不同的雷达频率呈现不同的雷达截面特
0
0
5
10
15
20
25
30
35
ka
10
5
金属球单站后向散射
0
-5
-10
/ a2 (dB)
-15
-20
-25
-30
-35
-40 0
5
10
15
20
25
30
35
ka
1.4
1.2
瑞利区RCS
1
/ a2 (dB)
0.8
0.6
0.4
0.2
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ka
雷达散射截面的定义
2
2
lim 4 R2 R
是一个假想面积
Es
2
Ei
lim 4 R2 R
Hs
2
Hi
其定义基于平面波照射点目标
是以下因素的函数
目标形状、结构、材料特性
频率
入射波极化
接收天线极化
目标相对雷达的姿态
雷达散射截面的名称: RCS(Radar Cross Section) 雷达散射截面 雷达散射截面积 雷达截面 雷达截面积 雷达散射截面常用σ表示
N
2
e j 2kRn n
n1
Rn为第n个散射体到雷达的距离
dB
dB 主要表示目标隐身化后雷达散射截面降低水平, 或不同目标的RCS对比分析
运算关系
dB dBsm1 dBsm2
常用说法
dB
10lg(1 2
)
……飞行器比……飞行器的RCS低……dB
……飞行器经某RCS减缩措施后,RCS降低……dB
4 a2b2 2
回波第三强,强RCS源于直接的镜面反射,偏离法向入 射时回波急剧减小。
第二章 雷达
2.3 雷达散射截面 2.3.6 简单形体的散射 3)平板
AMSAR(EF-2000)
圆柱
频率依赖关系 f 1
尺计寸算依公赖式关(系最大值L3 )
2 ab2
较强回波源于镜面反射,RCS与方位角 视角 增大而急剧减小。
2
2
lim 2 R R
Es
2
Ei
lim 2 R R
Hs
2
Hi
TM(Transverse Magnetic)波: 磁场方向垂直于参考平面
TE(Transverse Electric)波: 电场方向垂直于参考平面
二维金属圆柱后向散射宽度
/a(dB)
10
TM
5
TE
0
-5
-10
-15
发射
接收
-20
m2 100
80 60 40 20
0 0
H plane E plane
20
40
60
80
100 120 140 160 180
/
dB换算表
主要用于RCS计算(预估)中,可以进行相位 叠加,一般不用于表征目标的RCS
运算关系
S e j S cos jS sin
2
多个散射体RCS叠加结果
征。根据目标尺寸L与波长 散射方式。
的相对关系可分为3种
瑞利区
谐振区
光学区(又称高频区)
金属球的单站RCS随ka的变化。 a:球的半径 k:波数
k 2
瑞利区 ka 1 谐振区 1 ka 10 光学区 ka 10
4
3.5
金属球单站后向散射
3
2.5
/ a2
2
1.5
1
0.5
20
20
20
20
2
2
20
20
2
60
42
24
6
7.5
10
消除部分散射体的结果
同量级散射体
目标 1
(m2 ) 1减缩10dB
20
2
2
20
20
3
20
20
60
42
总减缩量/dB 0
1.6
1,2各减缩10dB 2 2 20 24 4
1,2,3各减缩10dB 2 2 2 6 10
结论: 针对不同量级散射源作同水平的减缩,主散射源的 减缩具有最重要效果 针对同量级散射源,欲大幅减缩RCS,需对所有同量 级散射源同时减缩。
时,尖
顶变成了圆锥,
时,尖顶变成薄片 或机翼的
角。
0
第二章 雷达
2.3 雷达散射截面 2.3.6 简单形体的散射 8)尖顶
第二章 雷达
第二章 雷达
第二章 雷达
金属球RCS随方位角和频率的变化(H平面)
金属球RCS随方位角和频率的变化(E平面)
二维雷达散射截面,也称“散射宽度”, SW(Scattering, Width),定义为
严格按相位叠加 不同量级散射体
N
2
e j 2kRn n
n1
目标
(m2 ) 1减缩10dB 2减缩10dB 1,2各减缩10dB
1
100
10
100
10
2
10
10
1
1
同相叠加(m2) 173.2
40
121
17.3
减缩量
0
6.4
1.6
10
反相叠加(m2) 46.7
0
81
4.7
减缩量
0
-2.5
则入射波能量密度为
wi
1 1
2 0
Ei
2
1 2
0
Hi
目标截获功率为
P wi
1 1 2 0
Ei
1 2
0
Hi
在距离R处的观测点,散射功率密度为
ws
P
4 R2
1
8 R2
1
0
Ei
2
1
8 R2
0
Hi
2
散射功率密度定义为
ws
1ቤተ መጻሕፍቲ ባይዱ1
2 0
Es
2
120
2
Hs
平面波假设,目标为点目标(远场),要求 所以
加法 多个散射体按相位叠加
N
2
e j 2kRn n
n1
按随机相位叠加
n
i
i1
减法和除法,一般表示减缩量(dB)
dB
dBsm1
dBsm2
10lg 1 2
R1 R2
0.5 1 2
0.0625 dB2
dB1
12dB
R1 R2
0.1 1 2
1104
dB2
瑞利区散射特征 ka 1
σ正比于 ka4
σ值起始很小,但它随频率的4次方增加 瑞利区雷达散射截面:
4 k 4V 2F 2
V:金属散射体的体积 F:散射体形状系数
谐振区散射特征 1 ka 10 σ表现出很强的振荡特性。入射波长和物体尺寸是同 一数量级,沿目标长度上入射场的相位变化很显著, 散射体的每一部分都会影响到其他部分。散射体各部 分间相互影响的总效果决定了最后总的电流密度分布。
f
,int
a
2
视角
int 边缘夹角
三维曲面机理当主曲率半径趋于0时的极限情况。
第二章 雷达
2.3 雷达散射截面 2.3.6 简单形体的散射 7)曲边缘
尖顶
频率依赖关系 f 2
尺寸依赖关系 计算公式
L0
2g( , , ,)
, 尖顶的内角
, 视角
上面的机理当a趋于0时的极限情况,
/a2(dB)
球体双站RCS,ka=4*pi
雷达方向
RCS(dB为单位)
25
H plane
20
E plane
15
10
5
0
-5
-10
-15
-20 0
20
40
60
80 100 120 140 160 180
/
入射波
E H
k
球体双站RCS,ka=4*pi
RCS(m2为单位)
/a2(dB)
180 160 140 120
-25
-30 0
5
10
15
20
25
30
35
ka
二维金属圆柱双站散射宽度
ka = 4*pi
/a(dB)
15 10
5 0 -5 -10 -15 -20 -25 -30
0
TM TE
50
100
150
200
250
300
350
400
/
接收 发射
二维金属圆柱散射宽度随频率和双站角变化(TM)
二维金属圆柱散射宽度随频率和双站角变化(TE)
第二章 雷达
2.3 雷达散射截面 2.3.6 简单形体的散射
方形三面角反射器 频率依赖关系 f 2 尺寸依赖关系 L4 计算公式(最大值)
回波最强,强RCS1源22于a4 三次反射 飞机上少见,但腔体散射与之类似