当前位置:文档之家› 锅炉空气预热器问题知多少

锅炉空气预热器问题知多少

锅炉空气预热器问题知多少一、循环流化床锅炉空气预热器有何作用?利用排烟热量加热锅炉助燃所需空气的受热设备,叫做空气预热器。

空气预热器的作用是:1、强化燃烧。

由于提高了锅炉的助燃空气的温度,可以缩短燃料的干燥时间和促使挥发分析出,从而使燃料迅速着火,加快燃烧速度,增强燃烧的稳定性,提高燃烧的效率;2、强化传热口由于使用了热空气并增强了燃烧,可以提高燃烧室的烟气温度,加强炉内辐射换热;3、提高锅炉运行的经济性,加装了空气预热器可以有效的进一步降低排烟温度,减少排烟损失,提高锅炉效率。

4、空气通过空气预热器加热后再送入炉膛,提高炉膛温度、促进燃料着火,改善或强化燃烧,保证低负荷下着火稳定性。

5、回热系统的采用使得给水温度提高,给水温度可高达250~290℃,若不采用空气预热器,排烟温度将很高。

6、炉膛内辐射传热量与火焰平均温度的四次方成正比。

送入炉膛热空气温度提高,使得火焰平均温度提高,从而增强了炉内的辐射传热。

这样,在满足相同的蒸发吸热量的条件下,就可以减少水冷壁管受热面,节省金属消耗量。

7、热空气作为制粉系统中干燥剂。

二、循环流化床锅炉空气预热器有哪几种形式?循环流化床锅炉目前采用的空预器有三种,大多数循环流化床锅炉使用管式空预器,管式空预器又分为立管式和卧管式;少数循环流化床锅炉采用热管空预器,它的优点是漏风系数较小;第三类是采用回转式空预器,它的优点是相对体积较小,适合大容量循环流化床锅炉。

如引进的白马 300MW 循环流化床锅炉。

由于循环流化床锅炉一次风压较高,为避免漏风系数过大,用于循环床的回转空预器采用特殊分仓和密封方式。

三、为什么循环流化床锅炉不宜采用立式管式空预器?由于循环流化床锅炉风机压头比煤粉锅炉高很多,如果采用立式管式空预器,空气将从管外走,空预器护板的密封性不好,容易漏风。

而采用卧式管式空预器,空气从管内走,密封结构更易于处理,避免漏风。

此外,采用卧式管式空预器,烟气在管外横向冲刷,空预器管子壁温较高,不易腐蚀。

四、空气预热器的腐蚀与积灰是如何形成的?由于空气预热器处于锅炉内烟温最低区,特别是未级空气预热器的冷端,空气温度最低、烟气温度也最低,受热面壁温最低,因而最易产生腐蚀和积灰。

当燃用含硫量较高的燃料时,生成的 SO 2 和 SO 3 气体,与烟气中的水蒸气生成亚硫酸或硫酸蒸汽。

在排烟温度低于酸蒸汽露点时,硫酸蒸汽便凝结在受热面上,对金属壁面产生严重腐蚀。

同时,酸液体也会粘结烟气中的灰分,越积越多,易产生堵灰。

循环流化床锅炉尾部烟道受热面积灰,受热面表面传热系数下降,使吸热量下降,排烟温度上升,锅炉热效率下降。

如果积灰严重,则会增加烟道阻力,导致引风机负荷增大,厂用电率增加。

长期腐蚀和积灰会造成受热面的损坏和泄漏。

当泄漏不严重时,可以维持运行,但使引风机负荷增加,限制了锅炉出力,严重影响锅炉运行的经济性。

五、什么是锅炉的低温腐蚀?由于燃煤中含有 S,而 S 在燃烧过程中会产生 SO 2 ,进而部分 SO 2 会被氧化成 SO 3 ;另一方面,锅炉烟气中还含有 NOx 等酸性气体,在烟气温度较低时,这些酸性气体会与烟气中的水蒸气发生反应生成相应的酸,生成的酸附着在尾部受热面以后,会对尾部受热面的金属产生腐蚀现象;或者在尾部换热管壁温度较低时,烟气中的酸性气体与管壁上的凝结水发生反应生成稀酸,腐蚀尾部受热面的金属,统称为低温腐蚀。

锅炉SCR烟气脱硝空气预热器堵塞具体解决方法:1、将入炉的煤硫粉的设定值控制在Sar≯0.9%的范围,尽可能地将原烟气SO2的浓度掌控在<1500mg/Nm3的情况,这样便能够很好的减少预热器当中烟气出现过多的现象;此外,需对脱硝系统中的喷氨量进行科学合理性的掌控,要确保脱硝率不可高出85%的范围,尽可能地将其掌控在80%-85%之间,其中,氨逃逸不可高出3.0ppm,这样才能够将氨逃逸发生的可能性降到最低的程度。

2、锅炉停止期间,需对空气预热器进行持续性吹灰处理,锅炉正常运行状态下,要不断强化对空气预热器冷段吹灰的处理,其中需将吹灰蒸汽压力提升到2.5Mpa,平均吹灰次数每日不可小于4次。

在高负荷阶段,若空气预热器差压非常大,那么则需要适当的增加吹灰次数。

在磨煤机出力情况较好的情况下尽可能地不启动顶层磨煤机,以免会有大量的一、二风量进入到炉膛当中,造成氮氧化物的生成,尽可能地将脱硝反应器入口的NOx浓度掌控在300mg/Nm3以内的范围。

3、整个锅炉运行的过程当中,可确保轻微缺氧的一种状态,把脱硝反应器入口NOx浓度掌控在低于300mg/Nm3的范围,千万不能有过度缺氧运行的情况发生,可将脱硫吸收塔入口CO浓度的实际状况作为参考,尽可能地把整个数值控制在150mg/Nm3以下;挑选最佳的煤种搭配方式,将入炉煤灰进行科学合理性的掌控,进行燃煤灰分的正确设计,将烟气的飞灰量减少到最低的程度。

有效地利用好小修时间,增加空气预热器当中冷段高压水冲洗,同时制定明确的冲洗机制。

4、启停炉地过程当中,尽可能地将并网时间缩减到最小,最好能够掌控在十个小时的范围。

同时,需增加氧量,这样才能够达到完全性燃烧。

空气预热器持续性吹灰,进而有效地缩减燃料积存于烟道的尾部。

按照实际运行状况及最终的检查结果,在机组安排接下来的大修过程中,可在空气预热器冷段选用“搪瓷”传热元件,搪瓷可以隔断腐蚀物,并且要保证外表整洁,容易清扫干净。

5、对脱硝系统实施优化处理,合理降低氨逃逸率。

因脱硝系统氨逃逸过程中形成的硫酸氢氨会造成空气预热器有堵塞的现象发生,为此需对脱硝系统进行合理性的优化,在脱硝率达到规定的基础上,适当地减少氨逃逸数量,进而将空气预热器堵塞发生的可能性降到最低的程度。

空气预热器运行中阻力上升,是何原因?1、空气预热器阻力上升多由堵灰引起,在脱硝系统运行过程中,由于NH3逃逸是客观存在的,对于空气预热器而言,逃逸的NH3与烟气中的 SO3和水形成大量硫酸氢铵不仅会对冷端传热元件造成腐蚀,而且液态的硫酸氢铵捕捉飞灰的能力极强,极易造成冷端层元件堵灰,从而导致空气预热器运行阻力升高。

同时由于喷氨时可能存在不均匀的问题,造成各个位置的氨气逃逸差别大,此时表计值很难真实反映HN3 的逃逸率。

根据日本AKK测试结果表明,若氨逃逸率增加到2PPM时,空气预热器运行半年后其阻力增加约30%;若氨逃逸率增加到3PPM时,空气预热器的阻力将会较快地增加 50%甚至更高。

2.、如果空气预热器冷端平均壁温较低,造成硫酸氢铵沉积段上移,会影响吹灰器的吹扫效果,同时冷端平均壁温较低时,会造成空气预热器冷端结露和低温腐蚀。

特别是冬季,空气预热器入口风温较低,这也是冬季易发生空气预热器堵灰的主要原因。

3、吹灰蒸汽参数或吹灰器实际运行不满足设计要求时,造成吹灰效果不佳,导致空气预热器积灰严重,从而使空气预热器阻力上升。

4、当燃用煤质偏离设计煤较大时,尤其是燃用硫份水分、灰分较高的煤种,不仅会导致酸露点温度提高,加剧冷端低温腐蚀,而且较高的灰分也会加速堵灰,最终造成空气预热器阻力上升。

针对脱硝后空气预热器出现阻力上升及堵灰的各方面原因措施和改进:1、严格控制SCR系统氨逃逸率。

加强SCR系统运行控制,检查SCR系统喷氨装置实际运行是否满足设计要求,时时监控氨逃逸率,保证在设计值内,且尽量控制在2PPM以下,避免过多逃逸的NH3与烟气中的SO3和水形成的硫酸氢铵对空气预热器冷端传热元件造成腐蚀和堵灰。

有些电厂为了保证较高的脱硝效率,大量喷氨,应严格控制此现象的发生。

2、合理投用暖风器或热风再循环等冷端保护装置。

当机组低负荷或环境温度较低时,尤其是冬季,应投用暖风器或热风再循环,提升空气预热器冷端平均壁温,降低低温腐蚀的影响,不仅可以有效提升传热元件的使用寿命,而且可以保证传热元件表面的光洁度,有利于提升吹灰效果,避免积灰。

对暖风器系统予以定期检查,查看是否存在泄漏点,确保其高效投用。

关于冷端平均壁温的选择可以参见如下导则:对燃煤机组,推荐最小冷端平均壁温。

从机组安全运行角度考虑,建议运行时冷端平均壁温比计算值高 5℃选取,因此按 73.3℃考虑。

检查调整吹灰蒸汽参数和吹灰器运行方式,使其满足设计要求:1、空气预热器热端传热元件较薄,注意吹灰蒸汽压力应控制在0.6~0.8Mpa之间,蒸汽温度300~350℃过热度约153℃。

并且吹灰工作前应充分疏水,疏水时间应控制在10min以上,且疏水温度应达到280度以上。

同时在吹灰频率上应适当调整,热端吹灰器应根据运行时阻力的上升情况按需吹灰,无需定时吹灰当空气预热器阻力上升时,先进行冷端吹灰,如阻力下降至正常范围内,即可判断为热端无积灰或积灰情况较轻,此时热端可不进行吹灰;如阻力持续升高可根据实际需要投入热端吹灰每 8 小时吹扫一次待阻力下降至正常范围即可停止吹灰。

2、相对热端传热元件而言,空气预热器冷端传热元件较厚,因此冷端吹灰蒸汽压力应控制在1.2~1.4Mpa之间,蒸汽温度300~350℃,过热度约153℃。

并且吹灰工作前应充分疏水,疏水时间应控制在10min以上,且疏水温度应达到280度以上。

冷端吹灰频率建议正常运行时每8小时吹灰一次机组起炉期间每四小时吹灰一次。

当空气预热器阻力上升严重时,可适当增加吹灰时间和吹灰频率,可考虑每四小时吹灰一次。

3、如果冷、热端吹灰器引自同一根蒸汽母管,热端吹灰器入口法兰前应考虑必要的减压措施,因为冷、热端传热元件厚度的差异所要求的吹灰工作压力的不同,且吹灰器自身携带的调压阀调节能力有限,如热端蒸汽直接引自冷端汽源,将会造成热端吹灰超压,从而对传热元件造成损坏。

可考虑在汽源和热端吹灰器之间增设减压阀,使蒸汽压力稳定在0.6~0.8Mpa的合理范围内。

4、建议在各吹灰器入口法兰前的蒸汽管道上增设压力表等压力监测装置,便于及时掌握各吹灰器入口蒸汽压力,以便对此进行调整。

运行时应密切监视吹灰汽源压力,保持稳定避免瞬间超压现象的发生。

稳定煤质。

稳定锅炉燃用煤质,尽量选用接近设计煤种的煤质,提高设备的适应性。

相关主题