塔机附墙设计计算说明书
一、工程概述
本工程位于惠南镇中心位置,东南面临南汇中学体育场,在体育场的西北角有一信号塔,距小区5号楼南外墙皮约20米左右,东北面临近复旦大学太平洋金融学院,南侧临拱北路,西侧临观海路。
本项目总用地面积55103.4平方米,总建筑面积133288.98平方米(含保温建筑面积)。
地上总建筑面积101191.19平方米(含保温建筑面积),包含4栋15层高层住宅,5栋16层高层住宅,2栋11层高层住宅,1栋5层多层住宅,3栋6层的多层住宅,1栋2层的商业配套用房及高层住宅群房的配套公建,地下总建筑面积32097.79平米。
本工程8#楼和9#楼合用安装一台南通惠尔建设机械有限公司出厂的QTZ63型(5510型)塔式起重机,臂长为58米,塔吊设置在9号楼东侧,(图1)安装高度超过使用说明书规定的最大独立高度,需进行附墙锚固,楼层高度为45.6m,塔机最大安装高度约为53m,设置有2道附墙,如图2所示。
生产厂家在使用说明书中标明了建筑物外墙与塔吊中心的距离在4.0m左右,但由于该工程建筑物表面结构及工程施工工艺等因素的影响,塔吊安装后,塔吊中心距离建筑物外墙8.997m。
所采用的附墙杆件的长度以及与建筑物间的夹角,与原说明书的规定有所不同。
为了保证塔吊安全使用,我们对附墙杆件及其连接件作了稳定性及强度验算。
图1 22号楼1#塔吊布置图
图2 塔吊附墙示意图
二、编制依据
本方案编制主要依据为:GB/T 13752-1992《塔式起重机设计规范》、GB 50017《钢结构设计规范》、GB/T 3811-2008 《起重机设计规范》和永发QTZ63型塔式起重机使用说明书。
三、设计方案
1.原说明书要求
按照产品安装使用说明书:附着架由四根撑杆和一套环梁等组成,它主要是把塔机固定在建筑物的柱子上,起着依附作用。
(见图3)
图3 原附着架示意图
2.改进设计方案
根据现场实际情况,塔机中心到连接点距离为8.997米。
设计方案如图4所示。
图4 塔吊附墙杆设置图
四、计算说明
1.计算附墙架对塔身的支反力
假设塔身为一连续梁结构(见图5),以此进行结构的受力分析,可用力法求出附墙受力。
实际使用中,塔机最上面的一道附墙受力最大,因为该道附墙节点力除由M引起的附墙受力外,还有承受由塔机悬臂端风
载及旋转件的离心水平惯性力在悬臂根部引起的水平切力F w 及下部塔身的水平风载。
图5 塔机附着受力分析简图
其中
Z M ——倾覆力矩 2P ——水平荷载 1)风荷载计算
根据GB/T 13572-92《塔式起重机设计规范》和GB/T 3811-2008《起重机设计规范》
式中:W F ——作用在塔式起重机上和物品上的风荷载;
W C ——风力系数; W p ——计算风压;
A ——垂直风向的迎风面积;()21220.1ηφ=+= A A A m L ——塔身风载计算高度;36= L m q ——单位长度风荷载。
(1)工作状态
其中:()()=1.71 1.710.7772 3.021η+=⨯+=W C 根据充实率0.184ϕ=查表得出0.7772η=
解出1421= q N m
(2)非工作状态 2)支反力求解
M Z
Z X
Y
(1)工作状态
根据图5受力分析简图和表1,并结合力学计算可以得出
工作状态下:
2
102.077 =
R kN
工
(2)非工作状态
根据图5受力分析简图和表1,并结合力学计算可以得出
非工作状态下:
2
192.286 =
R kN
非工
2.附墙杆内力计算
附着以上的塔吊结构是基本暴露在建筑物之上的,而风载荷的方向是随着风向在变化的,且塔机可以在工况和非工况下作360°回转,因此塔机上的不平衡力矩、横向力、风载荷等对塔身而言是变化的,水平方向的合作用力是可变的,为安全计算取其最大值计算。
假设合作用力为2
R',方向如下图所示。
选取第二道附墙结构为受力分析对象,由力法可求出杆件的最大轴向内力。
图7 受力分析图
1)工作状态
工作状态时,塔身承受扭矩和支反力的作用。
2102.077
==
R R kN
工,0360
θ
≤<
以上的计算过程将θ从0到360循环,解得每个杆件的最大轴压力,最大轴拉力。
2)非工作状态
非工作状态时,塔身只承受支反力的作用。
2192.286'== R R kN 非工,0360θ≤<
同理可以求出每个杆件在非工作状态下的最大轴向拉力和压力。
表3 非工作状态下杆件受力情况
3.附墙杆结构验算 1)附墙杆参数
附墙杆材料选用Q235角钢组成的格构柱。
由于长度太大,将杆件分为2段,段与段之间采用高强螺栓连接,见附墙示意图。
其中主弦杆(∟63×63×6mm )、腹杆(∟40×40×4mm )、主弦杆间距300×300mm 。
与建筑物之间用销轴联接。
截面图如图7所示。
图7 附墙杆截面
材料安全系数:=1.48n 工作 截面尺寸:300mm×300mm
主弦杆型钢:∟63×63×6 单位重量:5.72kg/m
单个角钢截面面积:7.29cm 2
腹杆型钢:∟40×40×4 单位重量:2.420kg/m
总截面面积:A = 4×7.29 = 29.16cm 2 惯性矩:
其中:04
27.12z I cm = 030
15 1.7813.222
a z cm =
-=-= 抗弯模量:3max
393.7I I
W cm y a
=
=
=
回转半径:13.36i cm =
= 杆长:110399= L mm 29024= L mm 38279
= L mm 2)杆件分析
杆1为最长杆且杆1为受力最大的杆,因此需对杆1进行校核。
(1)整体稳定性
a .风荷载 22.0= B A m 由0.4ω=、0.4η=可得 取 C W =2.431 P W = 1100Pa
所以 2.4311100 1.122995==⨯⨯= W W W F C P A N b .附墙杆总重量: 杆1:约400kg ; c .稳定系数ϕ 查表得:0.700ϕ= 杆1所受应力为: (2)单肢稳定性
杆3:单肢所受的力:()()
1017789842222=
++= --y x
M N M N N a z a z 式中:N ——轴心所受的力;011243.6== N F kN ,
a ——格构柱的宽度;300= a mm
z ——单个角钢的回转半径;17.8z mm =
单肢长度:01500= l mm 回转半径:0117.8= i mm
单肢截面积:201729= A mm 由01
0101
28λ=
= l mm i 查表得稳定系数010.966ϕ= 因此:[]01
10101
110.6σσϕ=
= ≤N MPa A 非工作 结构稳定性符合安全要求。
(3)调节丝杆处的调节孔验算
调节丝杆材料为调质的45#钢,两端用M100螺栓连接。
图8 调节丝杆示意图
a .调节丝杆孔校核 丝杆孔如图8所示
其中:A ——截面面积;23409.478= A mm b .螺栓强度校核 丝杆采用M100螺栓连接 螺栓的拉伸强度[]W
l l s
F A σσ=
≤ 其中: W F ——最大轴向拉力;243.6= W F kN
s A ——螺栓公称应力截面积;24220.16= s A mm
[]l σ——螺栓材料的许用拉应力。
[]202.91.7
s
l MPa σσ=
=
丝杆结构设计性符合安全要求。
(4)连接端销轴的验算 销轴的直径60= d mm
销轴剪切应力2163Q
d
τπ=
⋅ (港口起重机设计规范 公式1-6-45) 其中:Q ——销轴受到的最大剪力;22121.8== Q F kN 拉
d ——销轴的直径;60= d mm
连接处结构设计性符合安全要求。
(5)焊缝的验算
杆件与耳片均为Q235钢,杆件和耳片连接采用角焊缝,焊条E43,焊缝质量为三级,焊缝焊脚尺寸8= f h mm ,杆件的最大轴力取最大值
219.9= N kN ,焊缝长度为400= w l mm ;2160= w t f N mm 其中:N ——轴心拉力、压力或剪力;219.9= N kN
w l ——角焊缝的计算长度,对每条焊缝取其实际长度减去2f h ;
400= w l mm
e h ——角焊缝的计算厚度,对直角焊缝等于0.7
f h ,f h 为焊脚尺
寸。
0.7 5.6== e f h h mm
βf ——正面角焊缝的强度设计值增大系数;对承受静力荷载和间接承受动力荷载的结构, 1.22β=f ;对直接承受动力荷载的结构,
1.0β=f 。
焊缝设计符合安全要求。
结论:塔吊附墙杆设计符合安全要求!。