高中物理直线运动专项训练100(附答案)一、高中物理精讲专题测试直线运动1.倾角为θ的斜面与足够长的光滑水平面在D 处平滑连接,斜面上AB 的长度为3L ,BC 、CD 的长度均为3.5L ,BC 部分粗糙,其余部分光滑。
如图,4个“— ”形小滑块工件紧挨在一起排在斜面上,从下往上依次标为1、2、3、4,滑块上长为L 的轻杆与斜面平行并与上一个滑块接触但不粘连,滑块1恰好在A 处。
现将4个滑块一起由静止释放,设滑块经过D 处时无机械能损失,轻杆不会与斜面相碰。
已知每个滑块的质量为m 并可视为质点,滑块与粗糙面间的动摩擦因数为tan θ,重力加速度为g 。
求(1)滑块1刚进入BC 时,滑块1上的轻杆所受到的压力大小; (2)4个滑块全部滑上水平面后,相邻滑块之间的距离。
【答案】(1)3sin 4F mg θ=(2)43d L =【解析】 【详解】(1)以4个滑块为研究对象,设第一个滑块刚进BC 段时,4个滑块的加速度为a ,由牛顿第二定律:4sin cos 4mg mg ma θμθ-⋅=以滑块1为研究对象,设刚进入BC 段时,轻杆受到的压力为F ,由牛顿第二定律:sin cos F mg mg ma θμθ+-⋅=已知tan μθ= 联立可得:3sin 4F mg θ=(2)设4个滑块完全进入粗糙段时,也即第4个滑块刚进入BC 时,滑块的共同速度为v 这个过程, 4个滑块向下移动了6L 的距离,1、2、3滑块在粗糙段向下移动的距离分别为3L 、2L 、L ,由动能定理,有:214sin 6cos 32)4v 2mg L mg L L L m θμθ⋅-⋅⋅++=⋅( 可得:v 3sin gL θ=由于动摩擦因数为tan μθ=,则4个滑块都进入BC 段后,所受合外力为0,各滑块均以速度v 做匀速运动;第1个滑块离开BC 后做匀加速下滑,设到达D 处时速度为v 1,由动能定理:()22111sin 3.5v v 22mg L m m θ⋅=-可得:1v =当第1个滑块到达BC 边缘刚要离开粗糙段时,第2个滑块正以v 的速度匀速向下运动,且运动L 距离后离开粗糙段,依次类推,直到第4个滑块离开粗糙段。
由此可知,相邻两个滑块到达BC 段边缘的时间差为v L t ∆=,因此到达水平面的时间差也为vLt ∆= 所以滑块在水平面上的间距为1v d t =∆ 联立解得43d L =2.一个物体从塔顶上自由下落,在到达地面前的最后1s 内通过的位移是整个位移的925,求塔高,取g =10m/s 2. 【答案】125m 【解析】 【分析】 【详解】设物体下落总时间为t ,塔高为h ,根据自由落体公式:212h gt = 最后(t -1)s 下落的高度为:()21112h g t =- 位移间的关系为:11625h h = 联立解得:125h m =3.美国密执安大学五名学习航空航天工程的大学生搭乘NASA 的飞艇参加了“微重力学生飞行机会计划”,飞行员将飞艇开到6000m 的高空后,让飞艇由静止下落,以模拟一种微重力的环境.下落过程飞艇所受空气阻力为其重力的0.04倍,这样,可以获得持续25s 之久的失重状态,大学生们就可以进行微重力影响的实验.紧接着飞艇又做匀减速运动,若飞艇离地面的高度不得低于500m .重力加速度g 取10m/s 2,试计算: (1)飞艇在25s 内所下落的高度;(2)在飞艇后来的减速过程中,大学生对座位的压力至少是其重力的多少倍. 【答案】(1)飞艇在25s 内所下落的高度为3000m ;(2)在飞艇后来的减速过程中,大学生对座位的压力至少是其重力的2.152倍. 【解析】:(1)设飞艇在25 s 内下落的加速度为a 1,根据牛顿第二定律可得 mg -F 阻=ma 1, 解得:a 1==9.6 m/s 2.飞艇在25 s 内下落的高度为 h 1=a 1t 2=3000 m.(2)25 s 后飞艇将做匀减速运动,开始减速时飞艇的速度v 为 v =a 1t =240 m/s.减速运动下落的最大高度为 h 2=(6000-3000-500)m =2500 m. 减速运动飞艇的加速度大小a 2至少为 a 2==11.52 m/s 2.设座位对大学生的支持力为N ,则 N -mg =ma 2, N =m (g +a 2)=2.152mg 根据牛顿第三定律,N ′=N即大学生对座位压力是其重力的2.152倍.4.总质量为80kg 的跳伞运动员从离地500m 的直升机上跳下,经过2s 拉开绳索开启降落伞,如图所示是跳伞过程中的v-t 图,试根据图象求:(g 取10m/s 2) (1)t =1s 时运动员的加速度和所受阻力的大小. (2)估算14s 内运动员下落的高度及克服阻力做的功. (3)估算运动员从飞机上跳下到着地的总时间.【答案】(1)160N (2)158; 1.25×105J (3)71s 【解析】 【详解】(1)从图中可以看出,在t =2s 内运动员做匀加速运动,其加速度大小为162t v a t ==m/s 2=8m/s 2 设此过程中运动员受到的阻力大小为f ,根据牛顿第二定律,有mg -f =ma 得f =m (g -a )=80×(10-8)N =160N (2)从图中估算得出运动员在14s 内下落了 39.5×2×2m =158m根据动能定理,有212f mgh W mv -=所以有212f W mgh mv =-=(80×10×158-12×80×62)J≈1.25×105J(3)14s 后运动员做匀速运动的时间为5001586H h t v '--==s =57s 运动员从飞机上跳下到着地需要的总时间 t 总=t +t ′=(14+57)s =71s5.学校开展自制玩具汽车速度赛,比赛分为30 m 和50 m 两项,比赛在水平操场举行,所有参赛车从同一起跑线同时启动,按到达终点的先后顺序排定名次。
某同学有两辆玩具车,甲车可在启动居立即以额定功率加速运动;乙车启动后可保持2 m/s 2 的加速度做匀加速运动直到其速度达15m/s 。
两车进行模拟测试时发现,同时从起跑线启动后,经6s 两车到达同一位置。
试通过计算、分析判断该同学应分别以哪一辆玩具车参加30m 和50m 的比赛。
【答案】赛程小于36m 时应以甲车参赛;赛程为50m 时应以乙车参赛. 【解析】对乙车,根据 解得6s 内位移为x 1=36m 由已知6s 内两车位移相同,做两车的速度-时间图像;由图像可知6s 时刻乙车追上甲车,此时两车位移均为36m ;此前甲车超前乙车,故赛程小于36m 时应以甲车参赛;6s 后乙车速度还小于15m/s ,乙车速度总是大于甲车的速度,根据2ax 2=v 2可得乙车速度达到15m/s 的过程中位移为x 2=56.25m ;赛程长为36-56.25m 时,乙车一定比甲车快,故赛程为50m 时应以乙车参赛.6.一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1s 时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v ﹣t 图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)0.1和0.4.(2)6.0m (3)6.5m【解析】试题分析:(1)根据图像可以判定碰撞前木块与木板共同速度为4/v m s = 碰撞后木板速度水平向左,大小也是4/v m s = 木块受到滑动摩擦力而向右做匀减速, 根据牛顿第二定律有2240/1g m s μ-=,解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间t=1s ,位移 4.5x m =, 末速度v=4m/s ,其逆运动则为匀加速直线运动可得212x vt at =+,带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即2g a μ=,可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有()121M m g mg Ma μμ++=,可得214/3a m s =对滑块,则有加速度224/a m s =,滑块速度先减小到0,此时,木板向左的位移为2111111023x vt a t m =-=, 末速度18/3v m s = 滑块向右位移214022x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =-,解得20.5t s =此过程,木板位移2312121726x v t a t m =-=。
末速度31122/v v a t m s =-= 滑块位移此后木块和木板一起匀减速。
二者的相对位移最大为12346x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522vx ma==所以木板右端离墙壁最远的距离为1256.5x x x m++=考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力视频7.如图所示,质量为m=1kg的滑块,在水平力F作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s,长为L=1.4m,今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s2.求(1)水平作用力F的大小;(2)滑块开始下滑的高度h;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫8.5 —1s时F3=m×a3 0.2=0.1×a3 a3=2m/s2V3=v2-a3×t3=0.6-2×0.1=0.4m/s2分F4=m×a4 0.1=0.1×a4 a4=1m/s2V4=v3-a4×t4=0.4-1×0.4=01分v/t图像正确 3分考点:考查了牛顿第二定律与图像9.如图,在倾角为=37°的足够长固定斜面底端,一质量m=1kg的小物块以某一初速度沿斜面上滑,一段时间后返回出发点。